
What is the value of $ \underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}} $ ?
Answer
528.9k+ views
Hint: We have to use the function change for the limit $ \underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}} $ . The change gives the logarithm form. We have to take logarithm function on both sides of the equation $ p=\underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} $ . Then we use the limit formula of $ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+x \right)}{x}=1 $ . Using the logarithm omission, we get $ p=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}}=e $ .
Complete step by step solution:
Let us take the limit as $ p=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}} $ . We first interchange the variable of the given function $ x=\dfrac{1}{z} $ .
The limit also changes with the change of the variable.
Therefore,
Therefore, $ p=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}}=\underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} $ .
Now we try to find the limit value of the function suing logarithm.
We take logarithm mon the both sides of the function $ p=\underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} $ .
So, $ \log \left( p \right)=\log \left\{ \underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\} $ .
We know that $ \log \left\{ \underset{x\to a}{\mathop{\lim }}\,f\left( x \right) \right\}=\underset{x\to a}{\mathop{\lim }}\,\left[ \log \left\{ f\left( x \right) \right\} \right] $ .
Therefore, $ \log \left( p \right)=\log \left\{ \underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\}=\underset{z\to 0}{\mathop{\lim }}\,\left[ \log \left\{ {{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\} \right] $ .
Now we use the logarithm formula of $ \log {{a}^{x}}=x\log a $ .
Therefore, $ \log \left\{ {{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\}=\dfrac{1}{z}\log \left( 1+z \right)=\dfrac{\log \left( 1+z \right)}{z} $ .
The limit becomes $ \log \left( p \right)=\underset{z\to 0}{\mathop{\lim }}\,\left[ \log \left\{ {{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\} \right]=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+z \right)}{z} $ .
We know the limit value of $ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+x \right)}{x}=1 $ .
Therefore, $ \log \left( p \right)=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+z \right)}{z}=1 $ .
Now we try to omit the logarithm of the equation $ \log \left( p \right)=1 $ using the formula of $ {{\log }_{e}}a=y\Rightarrow a={{e}^{y}} $ .
So, $ \log \left( p \right)=1 $ gives $ p={{e}^{1}}=e $ . This gives $ p=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}}=e $ .
The value of limit $ \underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}} $ is $ e $ .
So, the correct answer is “e”.
Note: We can also directly use the limit formula of $ p=\underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}}=e $ . The formulas $ p=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}}=\underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} $ are the derivation of two formulas for one another.
Complete step by step solution:
Let us take the limit as $ p=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}} $ . We first interchange the variable of the given function $ x=\dfrac{1}{z} $ .
The limit also changes with the change of the variable.
Therefore,
| x | $ \infty $ |
| z | 0 |
Therefore, $ p=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}}=\underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} $ .
Now we try to find the limit value of the function suing logarithm.
We take logarithm mon the both sides of the function $ p=\underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} $ .
So, $ \log \left( p \right)=\log \left\{ \underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\} $ .
We know that $ \log \left\{ \underset{x\to a}{\mathop{\lim }}\,f\left( x \right) \right\}=\underset{x\to a}{\mathop{\lim }}\,\left[ \log \left\{ f\left( x \right) \right\} \right] $ .
Therefore, $ \log \left( p \right)=\log \left\{ \underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\}=\underset{z\to 0}{\mathop{\lim }}\,\left[ \log \left\{ {{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\} \right] $ .
Now we use the logarithm formula of $ \log {{a}^{x}}=x\log a $ .
Therefore, $ \log \left\{ {{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\}=\dfrac{1}{z}\log \left( 1+z \right)=\dfrac{\log \left( 1+z \right)}{z} $ .
The limit becomes $ \log \left( p \right)=\underset{z\to 0}{\mathop{\lim }}\,\left[ \log \left\{ {{\left( 1+z \right)}^{\dfrac{1}{z}}} \right\} \right]=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+z \right)}{z} $ .
We know the limit value of $ \underset{x\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+x \right)}{x}=1 $ .
Therefore, $ \log \left( p \right)=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\log \left( 1+z \right)}{z}=1 $ .
Now we try to omit the logarithm of the equation $ \log \left( p \right)=1 $ using the formula of $ {{\log }_{e}}a=y\Rightarrow a={{e}^{y}} $ .
So, $ \log \left( p \right)=1 $ gives $ p={{e}^{1}}=e $ . This gives $ p=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}}=e $ .
The value of limit $ \underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}} $ is $ e $ .
So, the correct answer is “e”.
Note: We can also directly use the limit formula of $ p=\underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}}=e $ . The formulas $ p=\underset{x\to \infty }{\mathop{\lim }}\,{{\left( 1+\dfrac{1}{x} \right)}^{x}}=\underset{z\to 0}{\mathop{\lim }}\,{{\left( 1+z \right)}^{\dfrac{1}{z}}} $ are the derivation of two formulas for one another.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

