
Value of $\text{tan15}{}^{\circ }$ (this question has multiple correct option)
A.$\dfrac{\sqrt{3}-1}{\sqrt{3}+1}$
B.$2-\sqrt{3}$
C. $2+\sqrt{3}$
D.$\sqrt{3}-1$
Answer
580.2k+ views
Hint: To calculate the value of $\text{tan15}{}^{\circ }$, we can use $\text{tan(A-B)}$ and we can also use $\text{tan2A}$.
Complete step by step answer:
We have $\text{tan15}{}^{\circ }$
WE can write it as,
$\Rightarrow \text{tan15}{}^{\circ }=\text{tan(}{{45}^{\circ }}-{{30}^{\circ }}\text{)}$
$\Rightarrow \text{tan(1}{{5}^{\circ }}\text{) = }\dfrac{\text{tan4}{{\text{5}}^{\circ }}-\text{tan3}{{\text{0}}^{\circ }}}{1-\text{tan4}{{\text{5}}^{\circ }}\times \text{tan3}{{\text{0}}^{\circ }}}$ $\left\{ \because \text{tan(A-B)}=\text{ }\dfrac{\text{tanA - tanB}}{1+\text{tanA}\times \text{tanB}} \right\}$
We know that , $\text{tan4}{{\text{5}}^{\circ }}=1$ and $\text{tan3}{{\text{0}}^{\circ }}=\dfrac{1}{\sqrt{3}}$
Hence, $\Rightarrow \text{tan(1}{{5}^{\circ }}\text{) = }\dfrac{1-\dfrac{1}{\sqrt{3}}}{1+\dfrac{1}{\sqrt{3}}}$
$\Rightarrow \text{tan(1}{{5}^{\circ }}\text{)}=\dfrac{\dfrac{\sqrt{3}-1}{\sqrt{3}}}{\dfrac{\sqrt{3}+1}{\sqrt{3}}}$
$\Rightarrow \text{tan(1}{{5}^{\circ }}\text{)}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}$
It is option A.
Now we can also write $\text{tan15}{}^{\circ }$as,
$\text{tan(2}\times \text{15}{}^{\circ })=\text{tan}({{30}^{\circ }})$
$\text{tan(2}\times \text{15}{}^{\circ })=\text{tan(2A)}$
And, $\text{tan(2A) = }\dfrac{2\text{tanA}}{1-\text{ta}{{\text{n}}^{2}}\text{A}}$
Also, $\text{tan3}{{\text{0}}^{\circ }}=\dfrac{1}{\sqrt{3}}$
Therefore,
$\text{tan(2}\times \text{15}{}^{\circ })=\text{tan3}{{\text{0}}^{\circ }}$
$\Rightarrow \dfrac{2\text{tan1}{{\text{5}}^{\circ }}}{1-\text{ta}{{\text{n}}^{2}}{{15}^{\circ }}}=\dfrac{1}{\sqrt{3}}$
$\Rightarrow 2\text{tan(}{{15}^{\circ }})\times \sqrt{3}=1-\text{ta}{{\text{n}}^{2}}{{15}^{\circ }}$
$\Rightarrow \text{ta}{{\text{n}}^{2}}{{15}^{\circ }}+2\sqrt{3}\text{tan1}{{\text{5}}^{\circ }}-1=0$
Now we can let $x=\tan ({{15}^{\circ }})$
Hence equation is
$\Rightarrow {{x}^{2}}+2\sqrt{3}x-1=0$
It is a quadratic equation of the form $a{{x}^{2}}+bx+c=0$ We can solve it by quadratic formula.
On comparing with $a{{x}^{2}}+bx+c=0$
$a=1\,,b=2\sqrt{3},\,c\,=-1$
By quadratic formula we can write
$\Rightarrow x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
$\Rightarrow x=\dfrac{-2\sqrt{3}\pm \sqrt{{{(2\sqrt{3})}^{2}}-4\times 1\times -1}}{2\times 1}$
$\Rightarrow x=\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2}$
$\Rightarrow x=\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2}$
$\Rightarrow x=\dfrac{-2\sqrt{3}\pm 4}{2}$
$\Rightarrow x=-\sqrt{3}\pm 2$
On substituting $x=\tan ({{15}^{\circ }})$
$\tan ({{15}^{\circ }})=-\sqrt{3}+2\,or\,\tan ({{15}^{\circ }})=-\sqrt{3}-2\,$
We know $\text{tan1}{{\text{5}}^{\circ }}$fall in 1st quadrant
Therefore, $\text{tan1}{{\text{5}}^{\circ }} > 0$
Hence, $\text{tan1}{{\text{5}}^{\circ }}=2-\sqrt{3}$
So, the correct answers are “Option A and B”.
Note: As in trigonometric we have value of general angle as ${{0}^{\circ }},\,{{30}^{\circ }}\,,\,{{45}^{\circ }},\,{{60}^{\circ }},\,{{90}^{\circ }}$ which values we know from trigonometry table. As in given question we know $\text{tan1}{{\text{5}}^{\circ }}$can’t be calculated directly then we have to transform given statement like $\text{tan1}{{\text{5}}^{\circ }}$in expressing we can conclude like $\text{tan(4}{{\text{5}}^{\circ }}\text{-3}{{\text{0}}^{\circ }})$and $\text{tan(2}\times \text{1}{{\text{5}}^{\circ }})$we did in this question.
Complete step by step answer:
We have $\text{tan15}{}^{\circ }$
WE can write it as,
$\Rightarrow \text{tan15}{}^{\circ }=\text{tan(}{{45}^{\circ }}-{{30}^{\circ }}\text{)}$
$\Rightarrow \text{tan(1}{{5}^{\circ }}\text{) = }\dfrac{\text{tan4}{{\text{5}}^{\circ }}-\text{tan3}{{\text{0}}^{\circ }}}{1-\text{tan4}{{\text{5}}^{\circ }}\times \text{tan3}{{\text{0}}^{\circ }}}$ $\left\{ \because \text{tan(A-B)}=\text{ }\dfrac{\text{tanA - tanB}}{1+\text{tanA}\times \text{tanB}} \right\}$
We know that , $\text{tan4}{{\text{5}}^{\circ }}=1$ and $\text{tan3}{{\text{0}}^{\circ }}=\dfrac{1}{\sqrt{3}}$
Hence, $\Rightarrow \text{tan(1}{{5}^{\circ }}\text{) = }\dfrac{1-\dfrac{1}{\sqrt{3}}}{1+\dfrac{1}{\sqrt{3}}}$
$\Rightarrow \text{tan(1}{{5}^{\circ }}\text{)}=\dfrac{\dfrac{\sqrt{3}-1}{\sqrt{3}}}{\dfrac{\sqrt{3}+1}{\sqrt{3}}}$
$\Rightarrow \text{tan(1}{{5}^{\circ }}\text{)}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}$
It is option A.
Now we can also write $\text{tan15}{}^{\circ }$as,
$\text{tan(2}\times \text{15}{}^{\circ })=\text{tan}({{30}^{\circ }})$
$\text{tan(2}\times \text{15}{}^{\circ })=\text{tan(2A)}$
And, $\text{tan(2A) = }\dfrac{2\text{tanA}}{1-\text{ta}{{\text{n}}^{2}}\text{A}}$
Also, $\text{tan3}{{\text{0}}^{\circ }}=\dfrac{1}{\sqrt{3}}$
Therefore,
$\text{tan(2}\times \text{15}{}^{\circ })=\text{tan3}{{\text{0}}^{\circ }}$
$\Rightarrow \dfrac{2\text{tan1}{{\text{5}}^{\circ }}}{1-\text{ta}{{\text{n}}^{2}}{{15}^{\circ }}}=\dfrac{1}{\sqrt{3}}$
$\Rightarrow 2\text{tan(}{{15}^{\circ }})\times \sqrt{3}=1-\text{ta}{{\text{n}}^{2}}{{15}^{\circ }}$
$\Rightarrow \text{ta}{{\text{n}}^{2}}{{15}^{\circ }}+2\sqrt{3}\text{tan1}{{\text{5}}^{\circ }}-1=0$
Now we can let $x=\tan ({{15}^{\circ }})$
Hence equation is
$\Rightarrow {{x}^{2}}+2\sqrt{3}x-1=0$
It is a quadratic equation of the form $a{{x}^{2}}+bx+c=0$ We can solve it by quadratic formula.
On comparing with $a{{x}^{2}}+bx+c=0$
$a=1\,,b=2\sqrt{3},\,c\,=-1$
By quadratic formula we can write
$\Rightarrow x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$
$\Rightarrow x=\dfrac{-2\sqrt{3}\pm \sqrt{{{(2\sqrt{3})}^{2}}-4\times 1\times -1}}{2\times 1}$
$\Rightarrow x=\dfrac{-2\sqrt{3}\pm \sqrt{12+4}}{2}$
$\Rightarrow x=\dfrac{-2\sqrt{3}\pm \sqrt{16}}{2}$
$\Rightarrow x=\dfrac{-2\sqrt{3}\pm 4}{2}$
$\Rightarrow x=-\sqrt{3}\pm 2$
On substituting $x=\tan ({{15}^{\circ }})$
$\tan ({{15}^{\circ }})=-\sqrt{3}+2\,or\,\tan ({{15}^{\circ }})=-\sqrt{3}-2\,$
We know $\text{tan1}{{\text{5}}^{\circ }}$fall in 1st quadrant
Therefore, $\text{tan1}{{\text{5}}^{\circ }} > 0$
Hence, $\text{tan1}{{\text{5}}^{\circ }}=2-\sqrt{3}$
So, the correct answers are “Option A and B”.
Note: As in trigonometric we have value of general angle as ${{0}^{\circ }},\,{{30}^{\circ }}\,,\,{{45}^{\circ }},\,{{60}^{\circ }},\,{{90}^{\circ }}$ which values we know from trigonometry table. As in given question we know $\text{tan1}{{\text{5}}^{\circ }}$can’t be calculated directly then we have to transform given statement like $\text{tan1}{{\text{5}}^{\circ }}$in expressing we can conclude like $\text{tan(4}{{\text{5}}^{\circ }}\text{-3}{{\text{0}}^{\circ }})$and $\text{tan(2}\times \text{1}{{\text{5}}^{\circ }})$we did in this question.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

