
What is the value of $ \sin \left( {\dfrac{{17\pi }}{{12}}} \right) $ ?
Answer
510k+ views
Hint: Sine function is periodic with the period of $ 2n\pi $ and so we will convert the given degrees of angle of sine in the form of the $ 2n\pi $ finding the correlation then will identify the location of the angle in the quadrant then will apply All STC rule for the resultant required value.
Complete step-by-step answer:
Take the given expression: $ \sin \left( {\dfrac{{17\pi }}{{12}}} \right) $
The above expression can be re-written: $ \sin \left( {\dfrac{{17\pi }}{{12}}} \right) = \sin \left( {\dfrac{{5\pi }}{{12}} + \pi } \right) $
Using the trigonometric table and the unit circle, also sine is negative in third quadrant
$ \sin \left( {\dfrac{{17\pi }}{{12}}} \right) = - \sin \left( {\dfrac{{5\pi }}{{12}}} \right) $
Now, using the identity –
$ 2{\sin ^2}\theta = 1 - \cos 2\theta $
$ 2{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = 1 - \cos 2\left( {\dfrac{{5\pi }}{{12}}} \right) $
Simplify the above expression-
$ 2{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = 1 - \cos \left( {\dfrac{{5\pi }}{6}} \right) $ …. (A)
Now, \[\cos \left( {\dfrac{{5\pi }}{6}} \right) = \cos \left( {\pi - \dfrac{\pi }{6}} \right)\]
Cosine is negative in second quadrant –
\[\cos \left( {\dfrac{{5\pi }}{6}} \right) = \cos \left( {\pi - \dfrac{\pi }{6}} \right) = - \dfrac{{\sqrt 3 }}{2}\]
Place the above value in equation (A)
$ 2{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = 1 + \dfrac{{\sqrt 3 }}{2} $
Simplify the above expression –
$
2{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = \dfrac{{2 + \sqrt 3 }}{2} \\
{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = \dfrac{{2 + \sqrt 3 }}{4} \;
$
Take square root on both the sides of the equation –
$
2{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = \dfrac{{2 + \sqrt 3 }}{2} \\
\sin \left( {\dfrac{{5\pi }}{{12}}} \right) = \sqrt {\dfrac{{2 + \sqrt 3 }}{4}} \;
$
Simplify –
$ \sin \left( {\dfrac{{5\pi }}{{12}}} \right) = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $
This is the required solution.
So, the correct answer is “$\pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $ ”.
Note: Remember the All STC rule, it is also known as ASTC rule in geometry. It states that all the trigonometric ratios in the first quadrant ( $ 0^\circ \;{\text{to 90}}^\circ $ ) are positive, sine and cosec are positive in the second quadrant ( $ 90^\circ {\text{ to 180}}^\circ $ ), tan and cot are positive in the third quadrant ( $ 180^\circ \;{\text{to 270}}^\circ $ ) and sin and cosec are positive in the fourth quadrant ( $ 270^\circ {\text{ to 360}}^\circ $ ).
Complete step-by-step answer:
Take the given expression: $ \sin \left( {\dfrac{{17\pi }}{{12}}} \right) $
The above expression can be re-written: $ \sin \left( {\dfrac{{17\pi }}{{12}}} \right) = \sin \left( {\dfrac{{5\pi }}{{12}} + \pi } \right) $
Using the trigonometric table and the unit circle, also sine is negative in third quadrant
$ \sin \left( {\dfrac{{17\pi }}{{12}}} \right) = - \sin \left( {\dfrac{{5\pi }}{{12}}} \right) $
Now, using the identity –
$ 2{\sin ^2}\theta = 1 - \cos 2\theta $
$ 2{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = 1 - \cos 2\left( {\dfrac{{5\pi }}{{12}}} \right) $
Simplify the above expression-
$ 2{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = 1 - \cos \left( {\dfrac{{5\pi }}{6}} \right) $ …. (A)
Now, \[\cos \left( {\dfrac{{5\pi }}{6}} \right) = \cos \left( {\pi - \dfrac{\pi }{6}} \right)\]
Cosine is negative in second quadrant –
\[\cos \left( {\dfrac{{5\pi }}{6}} \right) = \cos \left( {\pi - \dfrac{\pi }{6}} \right) = - \dfrac{{\sqrt 3 }}{2}\]
Place the above value in equation (A)
$ 2{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = 1 + \dfrac{{\sqrt 3 }}{2} $
Simplify the above expression –
$
2{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = \dfrac{{2 + \sqrt 3 }}{2} \\
{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = \dfrac{{2 + \sqrt 3 }}{4} \;
$
Take square root on both the sides of the equation –
$
2{\sin ^2}\left( {\dfrac{{5\pi }}{{12}}} \right) = \dfrac{{2 + \sqrt 3 }}{2} \\
\sin \left( {\dfrac{{5\pi }}{{12}}} \right) = \sqrt {\dfrac{{2 + \sqrt 3 }}{4}} \;
$
Simplify –
$ \sin \left( {\dfrac{{5\pi }}{{12}}} \right) = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $
This is the required solution.
So, the correct answer is “$\pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $ ”.
Note: Remember the All STC rule, it is also known as ASTC rule in geometry. It states that all the trigonometric ratios in the first quadrant ( $ 0^\circ \;{\text{to 90}}^\circ $ ) are positive, sine and cosec are positive in the second quadrant ( $ 90^\circ {\text{ to 180}}^\circ $ ), tan and cot are positive in the third quadrant ( $ 180^\circ \;{\text{to 270}}^\circ $ ) and sin and cosec are positive in the fourth quadrant ( $ 270^\circ {\text{ to 360}}^\circ $ ).
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

