
What is the value of \[\sin {{18}^{0}}\cos {{36}^{0}}\] equal to
A. 4
B. 2
C. 1
D. \[\dfrac{1}{4}\]
Answer
601.8k+ views
Hint: We have basic trigonometric identities as \[{{\cos }^{2}}A=1-{{\sin }^{2}}A\] and \[\cos 2A=1-2{{\sin }^{2}}A\] etc we use these identities to solve the problem and find the value of sin and cos separately.
Complete step-by-step answer:
We will first find the value of \[\sin {{18}^{0}}\].
Now we will first put A = \[{{18}^{0}}\]
Then, as (18)(5) = 90, we get 5A=90.
Now, we can write the above as,
\[\begin{align}
& {{90}^{0}}=5A \\
& \Rightarrow {{90}^{0}}=3A+2A \\
& \Rightarrow 2A={{90}^{0}}-3A \\
\end{align}\]
Now because 2A is equal to 900-3A, then applying sin on both sides of the above equation we get,
\[\sin (2A)=\sin ({{90}^{0}}-3A)\]
We know that \[\sin ({{90}^{0}}-\theta )=\cos \theta \], applying this to above obtained expression,
\[\Rightarrow \sin (2A)=\cos (3A)\]
Now using the trigonometric identities as \[\sin (2A)=2\sin A\cos A\] and \[\cos (3A)=4co{{s}^{3}}A-3\cos A\] in the above expression on both sides, we get,
\[\begin{align}
& 2\sin A\cos A=4co{{s}^{3}}A-3\cos A \\
& \Rightarrow 2\sin A\cos A-4co{{s}^{3}}A+3\cos A=0 \\
\end{align}\]
Taking cos common we get,
\[\Rightarrow \cos A(2\sin A-4{{\cos }^{2}}A+3)=0\]
Now because the above obtained expression is equal to 0 then one of the terms is 0. Now cosA can’t be 0 as A=180, which implies that \[2\sin A-4{{\cos }^{2}}A+3=0\].
We have \[2\sin A-4{{\cos }^{2}}A+3=0\]
Putting \[{{\cos }^{2}}A=1-{{\sin }^{2}}A\],
\[\begin{align}
& \Rightarrow 2\sin A-4(1-{{\sin }^{2}}A)+3=0 \\
& \Rightarrow 2\sin A-4+4{{\sin }^{2}}A+3=0 \\
& \Rightarrow 4{{\sin }^{2}}A+2\sin A-1=0 \\
\end{align}\]
Let sinA = x in above we get,
\[4{{x}^{2}}+2x-1=0\]
Applying the formula as, \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] , where b = 2 a= 4 and c= -1 in the formula we get,
\[\begin{align}
& x=\dfrac{-2\pm \sqrt{{{4}^{2}}+4}}{8} \\
& \Rightarrow x=\dfrac{-2\pm \sqrt{20}}{8} \\
& \Rightarrow x=\dfrac{-2\pm 2\sqrt{5}}{8} \\
& \Rightarrow x=\dfrac{-1\pm \sqrt{5}}{4} \\
\end{align}\]
Then, \[\sin A=\dfrac{-1\pm \sqrt{5}}{4}\].
Now taking the negative in \[-\sqrt{5}\] we get a value of sinA less than -1, which is not possible.
Hence, we get the value of \[\sin A=\dfrac{-1+\sqrt{5}}{4}\].
\[\Rightarrow \sin {{18}^{^{0}}}=\dfrac{-1+\sqrt{5}}{4}..........(i)\]
And applying the property \[\cos 2A=1-2{{\sin }^{2}}A\], we get,
\[\begin{align}
& cos{{36}^{0}}=\cos 2A=1-2{{\sin }^{2}}A \\
& \Rightarrow cos{{36}^{0}}=1-2{{\sin }^{2}}{{18}^{0}} \\
& \Rightarrow cos{{36}^{0}}=1-2{{\left( \dfrac{-1+\sqrt{5}}{4} \right)}^{2}} \\
& \Rightarrow cos{{36}^{0}}=\dfrac{1+\sqrt{5}}{4}............(ii) \\
\end{align}\]
Now we calculate the value of \[\sin {{18}^{0}}\cos {{36}^{0}}\] using equation(i) and equation(ii) we have,
\[\begin{align}
& \sin {{18}^{0}}\cos {{36}^{0}}=\left( \dfrac{-1+\sqrt{5}}{4} \right)\left( \dfrac{1+\sqrt{5}}{4} \right) \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{(-1+\sqrt{5})(1+\sqrt{5})}{16} \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{4}{16} \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{1}{4} \\
\end{align}\]
Hence, we obtain the value of \[\sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{1}{4}\], which is option (d).
Note: We always show or calculate the values of the trigonometric functions using trigonometric identities. Always assume one of the functions or angles as x and then try to apply the identity to get the value of the problem.
Complete step-by-step answer:
We will first find the value of \[\sin {{18}^{0}}\].
Now we will first put A = \[{{18}^{0}}\]
Then, as (18)(5) = 90, we get 5A=90.
Now, we can write the above as,
\[\begin{align}
& {{90}^{0}}=5A \\
& \Rightarrow {{90}^{0}}=3A+2A \\
& \Rightarrow 2A={{90}^{0}}-3A \\
\end{align}\]
Now because 2A is equal to 900-3A, then applying sin on both sides of the above equation we get,
\[\sin (2A)=\sin ({{90}^{0}}-3A)\]
We know that \[\sin ({{90}^{0}}-\theta )=\cos \theta \], applying this to above obtained expression,
\[\Rightarrow \sin (2A)=\cos (3A)\]
Now using the trigonometric identities as \[\sin (2A)=2\sin A\cos A\] and \[\cos (3A)=4co{{s}^{3}}A-3\cos A\] in the above expression on both sides, we get,
\[\begin{align}
& 2\sin A\cos A=4co{{s}^{3}}A-3\cos A \\
& \Rightarrow 2\sin A\cos A-4co{{s}^{3}}A+3\cos A=0 \\
\end{align}\]
Taking cos common we get,
\[\Rightarrow \cos A(2\sin A-4{{\cos }^{2}}A+3)=0\]
Now because the above obtained expression is equal to 0 then one of the terms is 0. Now cosA can’t be 0 as A=180, which implies that \[2\sin A-4{{\cos }^{2}}A+3=0\].
We have \[2\sin A-4{{\cos }^{2}}A+3=0\]
Putting \[{{\cos }^{2}}A=1-{{\sin }^{2}}A\],
\[\begin{align}
& \Rightarrow 2\sin A-4(1-{{\sin }^{2}}A)+3=0 \\
& \Rightarrow 2\sin A-4+4{{\sin }^{2}}A+3=0 \\
& \Rightarrow 4{{\sin }^{2}}A+2\sin A-1=0 \\
\end{align}\]
Let sinA = x in above we get,
\[4{{x}^{2}}+2x-1=0\]
Applying the formula as, \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] , where b = 2 a= 4 and c= -1 in the formula we get,
\[\begin{align}
& x=\dfrac{-2\pm \sqrt{{{4}^{2}}+4}}{8} \\
& \Rightarrow x=\dfrac{-2\pm \sqrt{20}}{8} \\
& \Rightarrow x=\dfrac{-2\pm 2\sqrt{5}}{8} \\
& \Rightarrow x=\dfrac{-1\pm \sqrt{5}}{4} \\
\end{align}\]
Then, \[\sin A=\dfrac{-1\pm \sqrt{5}}{4}\].
Now taking the negative in \[-\sqrt{5}\] we get a value of sinA less than -1, which is not possible.
Hence, we get the value of \[\sin A=\dfrac{-1+\sqrt{5}}{4}\].
\[\Rightarrow \sin {{18}^{^{0}}}=\dfrac{-1+\sqrt{5}}{4}..........(i)\]
And applying the property \[\cos 2A=1-2{{\sin }^{2}}A\], we get,
\[\begin{align}
& cos{{36}^{0}}=\cos 2A=1-2{{\sin }^{2}}A \\
& \Rightarrow cos{{36}^{0}}=1-2{{\sin }^{2}}{{18}^{0}} \\
& \Rightarrow cos{{36}^{0}}=1-2{{\left( \dfrac{-1+\sqrt{5}}{4} \right)}^{2}} \\
& \Rightarrow cos{{36}^{0}}=\dfrac{1+\sqrt{5}}{4}............(ii) \\
\end{align}\]
Now we calculate the value of \[\sin {{18}^{0}}\cos {{36}^{0}}\] using equation(i) and equation(ii) we have,
\[\begin{align}
& \sin {{18}^{0}}\cos {{36}^{0}}=\left( \dfrac{-1+\sqrt{5}}{4} \right)\left( \dfrac{1+\sqrt{5}}{4} \right) \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{(-1+\sqrt{5})(1+\sqrt{5})}{16} \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{4}{16} \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{1}{4} \\
\end{align}\]
Hence, we obtain the value of \[\sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{1}{4}\], which is option (d).
Note: We always show or calculate the values of the trigonometric functions using trigonometric identities. Always assume one of the functions or angles as x and then try to apply the identity to get the value of the problem.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

