
What is the value of \[\sin {{18}^{0}}\cos {{36}^{0}}\] equal to
A. 4
B. 2
C. 1
D. \[\dfrac{1}{4}\]
Answer
519k+ views
Hint: We have basic trigonometric identities as \[{{\cos }^{2}}A=1-{{\sin }^{2}}A\] and \[\cos 2A=1-2{{\sin }^{2}}A\] etc we use these identities to solve the problem and find the value of sin and cos separately.
Complete step-by-step answer:
We will first find the value of \[\sin {{18}^{0}}\].
Now we will first put A = \[{{18}^{0}}\]
Then, as (18)(5) = 90, we get 5A=90.
Now, we can write the above as,
\[\begin{align}
& {{90}^{0}}=5A \\
& \Rightarrow {{90}^{0}}=3A+2A \\
& \Rightarrow 2A={{90}^{0}}-3A \\
\end{align}\]
Now because 2A is equal to 900-3A, then applying sin on both sides of the above equation we get,
\[\sin (2A)=\sin ({{90}^{0}}-3A)\]
We know that \[\sin ({{90}^{0}}-\theta )=\cos \theta \], applying this to above obtained expression,
\[\Rightarrow \sin (2A)=\cos (3A)\]
Now using the trigonometric identities as \[\sin (2A)=2\sin A\cos A\] and \[\cos (3A)=4co{{s}^{3}}A-3\cos A\] in the above expression on both sides, we get,
\[\begin{align}
& 2\sin A\cos A=4co{{s}^{3}}A-3\cos A \\
& \Rightarrow 2\sin A\cos A-4co{{s}^{3}}A+3\cos A=0 \\
\end{align}\]
Taking cos common we get,
\[\Rightarrow \cos A(2\sin A-4{{\cos }^{2}}A+3)=0\]
Now because the above obtained expression is equal to 0 then one of the terms is 0. Now cosA can’t be 0 as A=180, which implies that \[2\sin A-4{{\cos }^{2}}A+3=0\].
We have \[2\sin A-4{{\cos }^{2}}A+3=0\]
Putting \[{{\cos }^{2}}A=1-{{\sin }^{2}}A\],
\[\begin{align}
& \Rightarrow 2\sin A-4(1-{{\sin }^{2}}A)+3=0 \\
& \Rightarrow 2\sin A-4+4{{\sin }^{2}}A+3=0 \\
& \Rightarrow 4{{\sin }^{2}}A+2\sin A-1=0 \\
\end{align}\]
Let sinA = x in above we get,
\[4{{x}^{2}}+2x-1=0\]
Applying the formula as, \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] , where b = 2 a= 4 and c= -1 in the formula we get,
\[\begin{align}
& x=\dfrac{-2\pm \sqrt{{{4}^{2}}+4}}{8} \\
& \Rightarrow x=\dfrac{-2\pm \sqrt{20}}{8} \\
& \Rightarrow x=\dfrac{-2\pm 2\sqrt{5}}{8} \\
& \Rightarrow x=\dfrac{-1\pm \sqrt{5}}{4} \\
\end{align}\]
Then, \[\sin A=\dfrac{-1\pm \sqrt{5}}{4}\].
Now taking the negative in \[-\sqrt{5}\] we get a value of sinA less than -1, which is not possible.
Hence, we get the value of \[\sin A=\dfrac{-1+\sqrt{5}}{4}\].
\[\Rightarrow \sin {{18}^{^{0}}}=\dfrac{-1+\sqrt{5}}{4}..........(i)\]
And applying the property \[\cos 2A=1-2{{\sin }^{2}}A\], we get,
\[\begin{align}
& cos{{36}^{0}}=\cos 2A=1-2{{\sin }^{2}}A \\
& \Rightarrow cos{{36}^{0}}=1-2{{\sin }^{2}}{{18}^{0}} \\
& \Rightarrow cos{{36}^{0}}=1-2{{\left( \dfrac{-1+\sqrt{5}}{4} \right)}^{2}} \\
& \Rightarrow cos{{36}^{0}}=\dfrac{1+\sqrt{5}}{4}............(ii) \\
\end{align}\]
Now we calculate the value of \[\sin {{18}^{0}}\cos {{36}^{0}}\] using equation(i) and equation(ii) we have,
\[\begin{align}
& \sin {{18}^{0}}\cos {{36}^{0}}=\left( \dfrac{-1+\sqrt{5}}{4} \right)\left( \dfrac{1+\sqrt{5}}{4} \right) \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{(-1+\sqrt{5})(1+\sqrt{5})}{16} \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{4}{16} \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{1}{4} \\
\end{align}\]
Hence, we obtain the value of \[\sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{1}{4}\], which is option (d).
Note: We always show or calculate the values of the trigonometric functions using trigonometric identities. Always assume one of the functions or angles as x and then try to apply the identity to get the value of the problem.
Complete step-by-step answer:
We will first find the value of \[\sin {{18}^{0}}\].
Now we will first put A = \[{{18}^{0}}\]
Then, as (18)(5) = 90, we get 5A=90.
Now, we can write the above as,
\[\begin{align}
& {{90}^{0}}=5A \\
& \Rightarrow {{90}^{0}}=3A+2A \\
& \Rightarrow 2A={{90}^{0}}-3A \\
\end{align}\]
Now because 2A is equal to 900-3A, then applying sin on both sides of the above equation we get,
\[\sin (2A)=\sin ({{90}^{0}}-3A)\]
We know that \[\sin ({{90}^{0}}-\theta )=\cos \theta \], applying this to above obtained expression,
\[\Rightarrow \sin (2A)=\cos (3A)\]
Now using the trigonometric identities as \[\sin (2A)=2\sin A\cos A\] and \[\cos (3A)=4co{{s}^{3}}A-3\cos A\] in the above expression on both sides, we get,
\[\begin{align}
& 2\sin A\cos A=4co{{s}^{3}}A-3\cos A \\
& \Rightarrow 2\sin A\cos A-4co{{s}^{3}}A+3\cos A=0 \\
\end{align}\]
Taking cos common we get,
\[\Rightarrow \cos A(2\sin A-4{{\cos }^{2}}A+3)=0\]
Now because the above obtained expression is equal to 0 then one of the terms is 0. Now cosA can’t be 0 as A=180, which implies that \[2\sin A-4{{\cos }^{2}}A+3=0\].
We have \[2\sin A-4{{\cos }^{2}}A+3=0\]
Putting \[{{\cos }^{2}}A=1-{{\sin }^{2}}A\],
\[\begin{align}
& \Rightarrow 2\sin A-4(1-{{\sin }^{2}}A)+3=0 \\
& \Rightarrow 2\sin A-4+4{{\sin }^{2}}A+3=0 \\
& \Rightarrow 4{{\sin }^{2}}A+2\sin A-1=0 \\
\end{align}\]
Let sinA = x in above we get,
\[4{{x}^{2}}+2x-1=0\]
Applying the formula as, \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] , where b = 2 a= 4 and c= -1 in the formula we get,
\[\begin{align}
& x=\dfrac{-2\pm \sqrt{{{4}^{2}}+4}}{8} \\
& \Rightarrow x=\dfrac{-2\pm \sqrt{20}}{8} \\
& \Rightarrow x=\dfrac{-2\pm 2\sqrt{5}}{8} \\
& \Rightarrow x=\dfrac{-1\pm \sqrt{5}}{4} \\
\end{align}\]
Then, \[\sin A=\dfrac{-1\pm \sqrt{5}}{4}\].
Now taking the negative in \[-\sqrt{5}\] we get a value of sinA less than -1, which is not possible.
Hence, we get the value of \[\sin A=\dfrac{-1+\sqrt{5}}{4}\].
\[\Rightarrow \sin {{18}^{^{0}}}=\dfrac{-1+\sqrt{5}}{4}..........(i)\]
And applying the property \[\cos 2A=1-2{{\sin }^{2}}A\], we get,
\[\begin{align}
& cos{{36}^{0}}=\cos 2A=1-2{{\sin }^{2}}A \\
& \Rightarrow cos{{36}^{0}}=1-2{{\sin }^{2}}{{18}^{0}} \\
& \Rightarrow cos{{36}^{0}}=1-2{{\left( \dfrac{-1+\sqrt{5}}{4} \right)}^{2}} \\
& \Rightarrow cos{{36}^{0}}=\dfrac{1+\sqrt{5}}{4}............(ii) \\
\end{align}\]
Now we calculate the value of \[\sin {{18}^{0}}\cos {{36}^{0}}\] using equation(i) and equation(ii) we have,
\[\begin{align}
& \sin {{18}^{0}}\cos {{36}^{0}}=\left( \dfrac{-1+\sqrt{5}}{4} \right)\left( \dfrac{1+\sqrt{5}}{4} \right) \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{(-1+\sqrt{5})(1+\sqrt{5})}{16} \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{4}{16} \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{1}{4} \\
\end{align}\]
Hence, we obtain the value of \[\sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{1}{4}\], which is option (d).
Note: We always show or calculate the values of the trigonometric functions using trigonometric identities. Always assume one of the functions or angles as x and then try to apply the identity to get the value of the problem.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
