
What is the value of \[\sin {{18}^{0}}\cos {{36}^{0}}\] equal to
A. 4
B. 2
C. 1
D. \[\dfrac{1}{4}\]
Answer
616.5k+ views
Hint: We have basic trigonometric identities as \[{{\cos }^{2}}A=1-{{\sin }^{2}}A\] and \[\cos 2A=1-2{{\sin }^{2}}A\] etc we use these identities to solve the problem and find the value of sin and cos separately.
Complete step-by-step answer:
We will first find the value of \[\sin {{18}^{0}}\].
Now we will first put A = \[{{18}^{0}}\]
Then, as (18)(5) = 90, we get 5A=90.
Now, we can write the above as,
\[\begin{align}
& {{90}^{0}}=5A \\
& \Rightarrow {{90}^{0}}=3A+2A \\
& \Rightarrow 2A={{90}^{0}}-3A \\
\end{align}\]
Now because 2A is equal to 900-3A, then applying sin on both sides of the above equation we get,
\[\sin (2A)=\sin ({{90}^{0}}-3A)\]
We know that \[\sin ({{90}^{0}}-\theta )=\cos \theta \], applying this to above obtained expression,
\[\Rightarrow \sin (2A)=\cos (3A)\]
Now using the trigonometric identities as \[\sin (2A)=2\sin A\cos A\] and \[\cos (3A)=4co{{s}^{3}}A-3\cos A\] in the above expression on both sides, we get,
\[\begin{align}
& 2\sin A\cos A=4co{{s}^{3}}A-3\cos A \\
& \Rightarrow 2\sin A\cos A-4co{{s}^{3}}A+3\cos A=0 \\
\end{align}\]
Taking cos common we get,
\[\Rightarrow \cos A(2\sin A-4{{\cos }^{2}}A+3)=0\]
Now because the above obtained expression is equal to 0 then one of the terms is 0. Now cosA can’t be 0 as A=180, which implies that \[2\sin A-4{{\cos }^{2}}A+3=0\].
We have \[2\sin A-4{{\cos }^{2}}A+3=0\]
Putting \[{{\cos }^{2}}A=1-{{\sin }^{2}}A\],
\[\begin{align}
& \Rightarrow 2\sin A-4(1-{{\sin }^{2}}A)+3=0 \\
& \Rightarrow 2\sin A-4+4{{\sin }^{2}}A+3=0 \\
& \Rightarrow 4{{\sin }^{2}}A+2\sin A-1=0 \\
\end{align}\]
Let sinA = x in above we get,
\[4{{x}^{2}}+2x-1=0\]
Applying the formula as, \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] , where b = 2 a= 4 and c= -1 in the formula we get,
\[\begin{align}
& x=\dfrac{-2\pm \sqrt{{{4}^{2}}+4}}{8} \\
& \Rightarrow x=\dfrac{-2\pm \sqrt{20}}{8} \\
& \Rightarrow x=\dfrac{-2\pm 2\sqrt{5}}{8} \\
& \Rightarrow x=\dfrac{-1\pm \sqrt{5}}{4} \\
\end{align}\]
Then, \[\sin A=\dfrac{-1\pm \sqrt{5}}{4}\].
Now taking the negative in \[-\sqrt{5}\] we get a value of sinA less than -1, which is not possible.
Hence, we get the value of \[\sin A=\dfrac{-1+\sqrt{5}}{4}\].
\[\Rightarrow \sin {{18}^{^{0}}}=\dfrac{-1+\sqrt{5}}{4}..........(i)\]
And applying the property \[\cos 2A=1-2{{\sin }^{2}}A\], we get,
\[\begin{align}
& cos{{36}^{0}}=\cos 2A=1-2{{\sin }^{2}}A \\
& \Rightarrow cos{{36}^{0}}=1-2{{\sin }^{2}}{{18}^{0}} \\
& \Rightarrow cos{{36}^{0}}=1-2{{\left( \dfrac{-1+\sqrt{5}}{4} \right)}^{2}} \\
& \Rightarrow cos{{36}^{0}}=\dfrac{1+\sqrt{5}}{4}............(ii) \\
\end{align}\]
Now we calculate the value of \[\sin {{18}^{0}}\cos {{36}^{0}}\] using equation(i) and equation(ii) we have,
\[\begin{align}
& \sin {{18}^{0}}\cos {{36}^{0}}=\left( \dfrac{-1+\sqrt{5}}{4} \right)\left( \dfrac{1+\sqrt{5}}{4} \right) \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{(-1+\sqrt{5})(1+\sqrt{5})}{16} \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{4}{16} \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{1}{4} \\
\end{align}\]
Hence, we obtain the value of \[\sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{1}{4}\], which is option (d).
Note: We always show or calculate the values of the trigonometric functions using trigonometric identities. Always assume one of the functions or angles as x and then try to apply the identity to get the value of the problem.
Complete step-by-step answer:
We will first find the value of \[\sin {{18}^{0}}\].
Now we will first put A = \[{{18}^{0}}\]
Then, as (18)(5) = 90, we get 5A=90.
Now, we can write the above as,
\[\begin{align}
& {{90}^{0}}=5A \\
& \Rightarrow {{90}^{0}}=3A+2A \\
& \Rightarrow 2A={{90}^{0}}-3A \\
\end{align}\]
Now because 2A is equal to 900-3A, then applying sin on both sides of the above equation we get,
\[\sin (2A)=\sin ({{90}^{0}}-3A)\]
We know that \[\sin ({{90}^{0}}-\theta )=\cos \theta \], applying this to above obtained expression,
\[\Rightarrow \sin (2A)=\cos (3A)\]
Now using the trigonometric identities as \[\sin (2A)=2\sin A\cos A\] and \[\cos (3A)=4co{{s}^{3}}A-3\cos A\] in the above expression on both sides, we get,
\[\begin{align}
& 2\sin A\cos A=4co{{s}^{3}}A-3\cos A \\
& \Rightarrow 2\sin A\cos A-4co{{s}^{3}}A+3\cos A=0 \\
\end{align}\]
Taking cos common we get,
\[\Rightarrow \cos A(2\sin A-4{{\cos }^{2}}A+3)=0\]
Now because the above obtained expression is equal to 0 then one of the terms is 0. Now cosA can’t be 0 as A=180, which implies that \[2\sin A-4{{\cos }^{2}}A+3=0\].
We have \[2\sin A-4{{\cos }^{2}}A+3=0\]
Putting \[{{\cos }^{2}}A=1-{{\sin }^{2}}A\],
\[\begin{align}
& \Rightarrow 2\sin A-4(1-{{\sin }^{2}}A)+3=0 \\
& \Rightarrow 2\sin A-4+4{{\sin }^{2}}A+3=0 \\
& \Rightarrow 4{{\sin }^{2}}A+2\sin A-1=0 \\
\end{align}\]
Let sinA = x in above we get,
\[4{{x}^{2}}+2x-1=0\]
Applying the formula as, \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\] , where b = 2 a= 4 and c= -1 in the formula we get,
\[\begin{align}
& x=\dfrac{-2\pm \sqrt{{{4}^{2}}+4}}{8} \\
& \Rightarrow x=\dfrac{-2\pm \sqrt{20}}{8} \\
& \Rightarrow x=\dfrac{-2\pm 2\sqrt{5}}{8} \\
& \Rightarrow x=\dfrac{-1\pm \sqrt{5}}{4} \\
\end{align}\]
Then, \[\sin A=\dfrac{-1\pm \sqrt{5}}{4}\].
Now taking the negative in \[-\sqrt{5}\] we get a value of sinA less than -1, which is not possible.
Hence, we get the value of \[\sin A=\dfrac{-1+\sqrt{5}}{4}\].
\[\Rightarrow \sin {{18}^{^{0}}}=\dfrac{-1+\sqrt{5}}{4}..........(i)\]
And applying the property \[\cos 2A=1-2{{\sin }^{2}}A\], we get,
\[\begin{align}
& cos{{36}^{0}}=\cos 2A=1-2{{\sin }^{2}}A \\
& \Rightarrow cos{{36}^{0}}=1-2{{\sin }^{2}}{{18}^{0}} \\
& \Rightarrow cos{{36}^{0}}=1-2{{\left( \dfrac{-1+\sqrt{5}}{4} \right)}^{2}} \\
& \Rightarrow cos{{36}^{0}}=\dfrac{1+\sqrt{5}}{4}............(ii) \\
\end{align}\]
Now we calculate the value of \[\sin {{18}^{0}}\cos {{36}^{0}}\] using equation(i) and equation(ii) we have,
\[\begin{align}
& \sin {{18}^{0}}\cos {{36}^{0}}=\left( \dfrac{-1+\sqrt{5}}{4} \right)\left( \dfrac{1+\sqrt{5}}{4} \right) \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{(-1+\sqrt{5})(1+\sqrt{5})}{16} \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{4}{16} \\
& \Rightarrow \sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{1}{4} \\
\end{align}\]
Hence, we obtain the value of \[\sin {{18}^{0}}\cos {{36}^{0}}=\dfrac{1}{4}\], which is option (d).
Note: We always show or calculate the values of the trigonometric functions using trigonometric identities. Always assume one of the functions or angles as x and then try to apply the identity to get the value of the problem.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

