
What is the value of \[\left( 1+i \right)\left( 1+{{i}^{2}} \right)\left( 1+{{i}^{3}} \right)\left( 1+{{i}^{4}} \right)\]
Answer
610.5k+ views
Hint: To solve this type of problem we have to know the direct value of \[{{i}^{2}}\]. After that, convert the Iota power terms in the form of \[{{i}^{2}}\] and solve the expression. After simplification solve all the terms to get the final answer.
Complete step-by-step solution -
Given \[\left( 1+i \right)\left( 1+{{i}^{2}} \right)\left( 1+{{i}^{3}} \right)\left( 1+{{i}^{4}} \right)\]
We know that \[{{i}^{2}}=-1\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Now converting the i power terms in the form of \[{{i}^{2}}\]
\[{{i}^{3}}=i.{{i}^{2}}=-i\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[{{i}^{4}}={{i}^{2}}.{{i}^{2}}=-1.-1=1\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Now substituting (1) (2) (3) in the above expression we get,
\[\left( 1+i \right)\left( 1-1 \right)\left( 1-i \right)\left( 1+1 \right)\]
Now further simplifying the terms we get,
\[\left( 1-{{i}^{2}} \right)\left( 0 \right)\left( 2 \right)\]
The value for the above expression is 0.
Note: We can solve this type of problem if we know the value of \[{{i}^{2}}\]. The value of the above expression is zero because the term \[\left( 1+{{i}^{2}} \right)\] is zero so if we multiply any term with zero we get the answer as zero. Be careful while doing calculations. Here we can use an alternate method by multiplying all the brackets and using the power of iota to simplify the expression.
Complete step-by-step solution -
Given \[\left( 1+i \right)\left( 1+{{i}^{2}} \right)\left( 1+{{i}^{3}} \right)\left( 1+{{i}^{4}} \right)\]
We know that \[{{i}^{2}}=-1\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1)
Now converting the i power terms in the form of \[{{i}^{2}}\]
\[{{i}^{3}}=i.{{i}^{2}}=-i\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)
\[{{i}^{4}}={{i}^{2}}.{{i}^{2}}=-1.-1=1\] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)
Now substituting (1) (2) (3) in the above expression we get,
\[\left( 1+i \right)\left( 1-1 \right)\left( 1-i \right)\left( 1+1 \right)\]
Now further simplifying the terms we get,
\[\left( 1-{{i}^{2}} \right)\left( 0 \right)\left( 2 \right)\]
The value for the above expression is 0.
Note: We can solve this type of problem if we know the value of \[{{i}^{2}}\]. The value of the above expression is zero because the term \[\left( 1+{{i}^{2}} \right)\] is zero so if we multiply any term with zero we get the answer as zero. Be careful while doing calculations. Here we can use an alternate method by multiplying all the brackets and using the power of iota to simplify the expression.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

How many states of matter are there in total class 12 chemistry CBSE

