
Value of $L = \mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{{n^4}}}\left[ {1 \cdot \left( {\sum\limits_{k = 1}^n k } \right) + 2 \cdot \left( {\sum\limits_{k = 1}^{n - 1} k } \right) + 3 \cdot \left( {\sum\limits_{k = 1}^{n - 2} k } \right) + ... + n \cdot 1} \right]$ is?
A.$\dfrac{1}{{24}}$
B.$\dfrac{1}{{12}}$
C.$\dfrac{1}{6}$
D.$\dfrac{1}{3}$
Answer
474.9k+ views
Hint: Here we are asked to find the value of the given sequence which has been given limit $n \to \infty $. To solve this problem, we first need to find the ${r^{th}}$ term (general form of any term). Then we will be using some standard summation formulae to expand the inner summation in the given problem. Then we will simplify it to find the required solution. Formulae that we use are given in the following formula section.
Formulae to be used:
$\sum\limits_{k = 1}^n k = \dfrac{{n(n + 1)}}{2}$
$\sum\limits_{k = 1}^n {{k^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
$\sum\limits_{k = 1}^n {{k^3}} = {\left( {\dfrac{{n(n + 1)}}{2}} \right)^2}$
$\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{x} = 0$
Complete step by step answer:
Given sequence $L = \mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{{n^4}}}\left[ {1 \cdot \left( {\sum\limits_{k = 1}^n k } \right) + 2 \cdot \left( {\sum\limits_{k = 1}^{n - 1} k } \right) + 3 \cdot \left( {\sum\limits_{k = 1}^{n - 2} k } \right) + ... + n \cdot 1} \right]$ .
To find the limit of the given sequence when $n \to \infty $ .
First, we know, $\sum\limits_{k = 1}^n k = \dfrac{{n(n + 1)}}{2}$ , then, the second term becomes, $2\sum\limits_{k = 1}^{n - 1} k = \dfrac{{2(n - 1)(n)}}{2}$ , similarly, the third term becomes, $3\sum\limits_{k = 1}^{n - 2} k = \dfrac{{3(n - 2)(n - 1)}}{2}$ .
In similar manner, the ${r^{th}}$ term becomes, \[{T_r} = \dfrac{{r(n + 1 - r)(n + 2 - r)}}{2}\] .
Now, consider $(n + 1)$ as one term and similarly, $(n + 2)$ as one term and multiply both brackets and simplify,
${T_r} = \dfrac{{r\left[ {(n + 1)(n + 2) - r(n + 1) - r(n + 2) + {r^2}} \right]}}{2}$ which can also be written as ${T_r} = \dfrac{{r\left[ {(n + 1)(n + 2) - r\left( {(n + 1) + (n + 2)} \right) + {r^2}} \right]}}{2}$ .
Now multiplying $r$ inside the brackets, we get ${T_r} = \dfrac{{\left[ {r(n + 1)(n + 2) - {r^2}(2n + 3) + {r^3}} \right]}}{2}$ , which can also be written as ${T_r} = \dfrac{{r(n + 1)(n + 2)}}{2} - \dfrac{{{r^2}(2n + 3)}}{2} + \dfrac{{{r^3}}}{2}$ .
Applying summation on both sides, we get, \[\sum\limits_{r = 1}^n {{T_r}} = \sum\limits_{r = 1}^n {\dfrac{{r(n + 1)(n + 2)}}{2}} - \sum\limits_{r = 1}^n {\dfrac{{{r^2}(2n + 3)}}{2}} + \sum\limits_{r = 1}^n {\dfrac{{{r^3}}}{2}} \] .
Now, using formulae associated with summation, we get, \[\sum\limits_{r = 1}^n {{T_r}} = \dfrac{{n(n + 1)(n + 1)(n + 2)}}{4} - \dfrac{{n(n + 1)(2n + 1)(2n + 3)}}{{12}} + \dfrac{{{{\left( {n(n + 1)} \right)}^2}}}{8}\] .
Now, take ${n^4}$ common from each numerator, we get, \[\sum\limits_{r = 1}^n {{T_r}} = {n^4}\left[ {\dfrac{{1 \cdot \left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)}}{4} - \dfrac{{1 \cdot \left( {1 + \dfrac{1}{n}} \right)\left( {2 + \dfrac{1}{n}} \right)\left( {2 + \dfrac{3}{n}} \right)}}{{12}} + \dfrac{{{{\left( {1 \cdot \left( {1 + \dfrac{1}{n}} \right)} \right)}^2}}}{8}} \right]\] .
Now, finally applying limits, we get, $\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{{n^4}}}\sum\limits_{r = 1}^n {{T_r}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{{n^4}}}{{{n^4}}}\left[ {\dfrac{{1 \cdot \left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)}}{4} - \dfrac{{1 \cdot \left( {1 + \dfrac{1}{n}} \right)\left( {2 + \dfrac{1}{n}} \right)\left( {2 + \dfrac{3}{n}} \right)}}{{12}} + \dfrac{{{{\left( {1 \cdot \left( {1 + \dfrac{1}{n}} \right)} \right)}^2}}}{8}} \right]$
We know, $\dfrac{1}{n} \to 0$ when $n \to \infty $ , so we get, $\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{{n^4}}}\sum\limits_{r = 1}^n {{T_r}} = \mathop {\lim }\limits_{n \to \infty } \left[ {\dfrac{{1 \cdot \left( {1 + 0} \right)\left( {1 + 0} \right)\left( {1 + 0} \right)}}{4} - \dfrac{{1 \cdot \left( {1 + 0} \right)\left( {2 + 0} \right)\left( {2 + 0} \right)}}{{12}} + \dfrac{{{{\left( {1 \cdot \left( {1 + 0} \right)} \right)}^2}}}{8}} \right]$ i.e., $\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{{n^4}}}\sum\limits_{r = 1}^n {{T_r}} = \left[ {\dfrac{1}{4} - \dfrac{4}{{12}} + \dfrac{1}{8}} \right]$ , now, least common multiple of $4,12,8$ is $24$ .
Hence, we get, $\dfrac{{6 - 8 + 3}}{{24}}$ i.e., $\dfrac{1}{{24}}$ .
Thus, option $(A)$ is correct.
Note:
One can easily verify if the ${r^{th}}$ term is correct or not by putting different values of $r$ . Like for this question, the ${r^{th}}$ term is \[{T_r} = \dfrac{{r(n + 1 - r)(n + 2 - r)}}{2}\] , if we put $r = 1$ , then \[{T_1} = \dfrac{{n(n + 1)}}{2}\] , which matches our first term, similarly, for $r = 2$ , ${T_2} = \dfrac{{2(n + 1 - 2)(n + 2 - 2)}}{2} = \dfrac{{2(n - 1)(n)}}{2}$ and finally if we put $r = n$ , then ${T_n} = \dfrac{{n(n + 1 - n)(n + 2 - n)}}{2} = \dfrac{{n(1)(2)}}{2} = n \cdot 1$ , which is our ${n^{th}}$ term.
In limit $n \to \infty $ , $n$ is not exactly equal to $\infty $ , but it is approaching towards $\infty $ , or we can say that $n$ is tending towards $\infty $ .
One should remember the basic identities associated with summation, which makes our work easier in solving such questions.
Formulae to be used:
$\sum\limits_{k = 1}^n k = \dfrac{{n(n + 1)}}{2}$
$\sum\limits_{k = 1}^n {{k^2}} = \dfrac{{n(n + 1)(2n + 1)}}{6}$
$\sum\limits_{k = 1}^n {{k^3}} = {\left( {\dfrac{{n(n + 1)}}{2}} \right)^2}$
$\mathop {\lim }\limits_{x \to \infty } \dfrac{1}{x} = 0$
Complete step by step answer:
Given sequence $L = \mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{{n^4}}}\left[ {1 \cdot \left( {\sum\limits_{k = 1}^n k } \right) + 2 \cdot \left( {\sum\limits_{k = 1}^{n - 1} k } \right) + 3 \cdot \left( {\sum\limits_{k = 1}^{n - 2} k } \right) + ... + n \cdot 1} \right]$ .
To find the limit of the given sequence when $n \to \infty $ .
First, we know, $\sum\limits_{k = 1}^n k = \dfrac{{n(n + 1)}}{2}$ , then, the second term becomes, $2\sum\limits_{k = 1}^{n - 1} k = \dfrac{{2(n - 1)(n)}}{2}$ , similarly, the third term becomes, $3\sum\limits_{k = 1}^{n - 2} k = \dfrac{{3(n - 2)(n - 1)}}{2}$ .
In similar manner, the ${r^{th}}$ term becomes, \[{T_r} = \dfrac{{r(n + 1 - r)(n + 2 - r)}}{2}\] .
Now, consider $(n + 1)$ as one term and similarly, $(n + 2)$ as one term and multiply both brackets and simplify,
${T_r} = \dfrac{{r\left[ {(n + 1)(n + 2) - r(n + 1) - r(n + 2) + {r^2}} \right]}}{2}$ which can also be written as ${T_r} = \dfrac{{r\left[ {(n + 1)(n + 2) - r\left( {(n + 1) + (n + 2)} \right) + {r^2}} \right]}}{2}$ .
Now multiplying $r$ inside the brackets, we get ${T_r} = \dfrac{{\left[ {r(n + 1)(n + 2) - {r^2}(2n + 3) + {r^3}} \right]}}{2}$ , which can also be written as ${T_r} = \dfrac{{r(n + 1)(n + 2)}}{2} - \dfrac{{{r^2}(2n + 3)}}{2} + \dfrac{{{r^3}}}{2}$ .
Applying summation on both sides, we get, \[\sum\limits_{r = 1}^n {{T_r}} = \sum\limits_{r = 1}^n {\dfrac{{r(n + 1)(n + 2)}}{2}} - \sum\limits_{r = 1}^n {\dfrac{{{r^2}(2n + 3)}}{2}} + \sum\limits_{r = 1}^n {\dfrac{{{r^3}}}{2}} \] .
Now, using formulae associated with summation, we get, \[\sum\limits_{r = 1}^n {{T_r}} = \dfrac{{n(n + 1)(n + 1)(n + 2)}}{4} - \dfrac{{n(n + 1)(2n + 1)(2n + 3)}}{{12}} + \dfrac{{{{\left( {n(n + 1)} \right)}^2}}}{8}\] .
Now, take ${n^4}$ common from each numerator, we get, \[\sum\limits_{r = 1}^n {{T_r}} = {n^4}\left[ {\dfrac{{1 \cdot \left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)}}{4} - \dfrac{{1 \cdot \left( {1 + \dfrac{1}{n}} \right)\left( {2 + \dfrac{1}{n}} \right)\left( {2 + \dfrac{3}{n}} \right)}}{{12}} + \dfrac{{{{\left( {1 \cdot \left( {1 + \dfrac{1}{n}} \right)} \right)}^2}}}{8}} \right]\] .
Now, finally applying limits, we get, $\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{{n^4}}}\sum\limits_{r = 1}^n {{T_r}} = \mathop {\lim }\limits_{n \to \infty } \dfrac{{{n^4}}}{{{n^4}}}\left[ {\dfrac{{1 \cdot \left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{1}{n}} \right)\left( {1 + \dfrac{2}{n}} \right)}}{4} - \dfrac{{1 \cdot \left( {1 + \dfrac{1}{n}} \right)\left( {2 + \dfrac{1}{n}} \right)\left( {2 + \dfrac{3}{n}} \right)}}{{12}} + \dfrac{{{{\left( {1 \cdot \left( {1 + \dfrac{1}{n}} \right)} \right)}^2}}}{8}} \right]$
We know, $\dfrac{1}{n} \to 0$ when $n \to \infty $ , so we get, $\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{{n^4}}}\sum\limits_{r = 1}^n {{T_r}} = \mathop {\lim }\limits_{n \to \infty } \left[ {\dfrac{{1 \cdot \left( {1 + 0} \right)\left( {1 + 0} \right)\left( {1 + 0} \right)}}{4} - \dfrac{{1 \cdot \left( {1 + 0} \right)\left( {2 + 0} \right)\left( {2 + 0} \right)}}{{12}} + \dfrac{{{{\left( {1 \cdot \left( {1 + 0} \right)} \right)}^2}}}{8}} \right]$ i.e., $\mathop {\lim }\limits_{n \to \infty } \dfrac{1}{{{n^4}}}\sum\limits_{r = 1}^n {{T_r}} = \left[ {\dfrac{1}{4} - \dfrac{4}{{12}} + \dfrac{1}{8}} \right]$ , now, least common multiple of $4,12,8$ is $24$ .
Hence, we get, $\dfrac{{6 - 8 + 3}}{{24}}$ i.e., $\dfrac{1}{{24}}$ .
Thus, option $(A)$ is correct.
Note:
One can easily verify if the ${r^{th}}$ term is correct or not by putting different values of $r$ . Like for this question, the ${r^{th}}$ term is \[{T_r} = \dfrac{{r(n + 1 - r)(n + 2 - r)}}{2}\] , if we put $r = 1$ , then \[{T_1} = \dfrac{{n(n + 1)}}{2}\] , which matches our first term, similarly, for $r = 2$ , ${T_2} = \dfrac{{2(n + 1 - 2)(n + 2 - 2)}}{2} = \dfrac{{2(n - 1)(n)}}{2}$ and finally if we put $r = n$ , then ${T_n} = \dfrac{{n(n + 1 - n)(n + 2 - n)}}{2} = \dfrac{{n(1)(2)}}{2} = n \cdot 1$ , which is our ${n^{th}}$ term.
In limit $n \to \infty $ , $n$ is not exactly equal to $\infty $ , but it is approaching towards $\infty $ , or we can say that $n$ is tending towards $\infty $ .
One should remember the basic identities associated with summation, which makes our work easier in solving such questions.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

