
What is the value of ${{i}^{1000}}+{{i}^{1001}}+{{i}^{1002}}+{{i}^{1003}}$, where $i=\sqrt{-1}$?
(a) 0
(b) $i$
(c) $-i$
(d) 1
Answer
603.9k+ views
Hint: To find the value of the given expression, calculate the square, cube, and fourth power of $i=\sqrt{-1}$. Use the fact that the higher powers of $i=\sqrt{-1}$ can be written in terms of these lower powers of $i$. Simplify the given equation and rewrite the terms into simpler terms to get the final answer.
Complete step-by-step answer:
We have to calculate the value of ${{i}^{1000}}+{{i}^{1001}}+{{i}^{1002}}+{{i}^{1003}}$.
We know that $i$ is a square root of unity. Thus, we have $i=\sqrt{-1}$.
We will calculate the square, cube, and fourth power of $i=\sqrt{-1}$.
Thus, squaring the above equation, we have ${{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1$. Taking the cube of the equation $i=\sqrt{-1}$, we have ${{i}^{3}}={{\left( \sqrt{-1} \right)}^{3}}={{i}^{2+1}}=-1\times i=-i$. Taking the fourth power of $i=\sqrt{-1}$, we have ${{i}^{4}}={{\left( {{i}^{2}} \right)}^{2}}={{\left( -1 \right)}^{2}}=1$ .
We will now write the higher powers of $i=\sqrt{-1}$ in terms of the above calculated powers of $i=\sqrt{-1}$.
We can rewrite ${{i}^{1000}}$ as ${{i}^{1000}}={{\left( {{i}^{4}} \right)}^{250}}$. Thus, we have ${{i}^{1000}}={{\left( {{i}^{4}} \right)}^{250}}={{\left( 1 \right)}^{250}}=1$.
Similarly, we will write ${{i}^{1001}}$ in terms of lower powers of $i$ . Thus, we have ${{i}^{1001}}={{i}^{4\times 250+1}}={{\left( {{i}^{4}} \right)}^{250}}\times i=1\times i=i$ .
We will now rewrite ${{i}^{1002}}$ in terms of lower powers of $i$. Thus, we have ${{i}^{1002}}={{i}^{4\times 250+2}}={{\left( 1 \right)}^{250}}\times {{i}^{2}}=1\times \left( -1 \right)=-1$.
We will rewrite ${{i}^{1003}}$ in terms of lower powers of $i$. Thus, we have ${{i}^{1003}}={{i}^{4\times 250+3}}={{\left( {{i}^{4}} \right)}^{250}}\times {{i}^{3}}=1\times \left( -i \right)=-i$ .
Thus, we can rewrite ${{i}^{1000}}+{{i}^{1001}}+{{i}^{1002}}+{{i}^{1003}}$ as ${{i}^{1000}}+{{i}^{1001}}+{{i}^{1002}}+{{i}^{1003}}=1+i+\left( -1 \right)+\left( -i \right)=0$.
Hence, the value of the expression ${{i}^{1000}}+{{i}^{1001}}+{{i}^{1002}}+{{i}^{1003}}$ is 0, which is option (a).
Note: It’s necessary to write the higher powers of $i$ in terms of lower powers to simplify the given expression. Otherwise, we won’t be able to solve this question. $i$ represents the square root of unity. It is the root of the equation ${{x}^{2}}+1=0$. It denotes the imaginary part of complex numbers.
Complete step-by-step answer:
We have to calculate the value of ${{i}^{1000}}+{{i}^{1001}}+{{i}^{1002}}+{{i}^{1003}}$.
We know that $i$ is a square root of unity. Thus, we have $i=\sqrt{-1}$.
We will calculate the square, cube, and fourth power of $i=\sqrt{-1}$.
Thus, squaring the above equation, we have ${{i}^{2}}={{\left( \sqrt{-1} \right)}^{2}}=-1$. Taking the cube of the equation $i=\sqrt{-1}$, we have ${{i}^{3}}={{\left( \sqrt{-1} \right)}^{3}}={{i}^{2+1}}=-1\times i=-i$. Taking the fourth power of $i=\sqrt{-1}$, we have ${{i}^{4}}={{\left( {{i}^{2}} \right)}^{2}}={{\left( -1 \right)}^{2}}=1$ .
We will now write the higher powers of $i=\sqrt{-1}$ in terms of the above calculated powers of $i=\sqrt{-1}$.
We can rewrite ${{i}^{1000}}$ as ${{i}^{1000}}={{\left( {{i}^{4}} \right)}^{250}}$. Thus, we have ${{i}^{1000}}={{\left( {{i}^{4}} \right)}^{250}}={{\left( 1 \right)}^{250}}=1$.
Similarly, we will write ${{i}^{1001}}$ in terms of lower powers of $i$ . Thus, we have ${{i}^{1001}}={{i}^{4\times 250+1}}={{\left( {{i}^{4}} \right)}^{250}}\times i=1\times i=i$ .
We will now rewrite ${{i}^{1002}}$ in terms of lower powers of $i$. Thus, we have ${{i}^{1002}}={{i}^{4\times 250+2}}={{\left( 1 \right)}^{250}}\times {{i}^{2}}=1\times \left( -1 \right)=-1$.
We will rewrite ${{i}^{1003}}$ in terms of lower powers of $i$. Thus, we have ${{i}^{1003}}={{i}^{4\times 250+3}}={{\left( {{i}^{4}} \right)}^{250}}\times {{i}^{3}}=1\times \left( -i \right)=-i$ .
Thus, we can rewrite ${{i}^{1000}}+{{i}^{1001}}+{{i}^{1002}}+{{i}^{1003}}$ as ${{i}^{1000}}+{{i}^{1001}}+{{i}^{1002}}+{{i}^{1003}}=1+i+\left( -1 \right)+\left( -i \right)=0$.
Hence, the value of the expression ${{i}^{1000}}+{{i}^{1001}}+{{i}^{1002}}+{{i}^{1003}}$ is 0, which is option (a).
Note: It’s necessary to write the higher powers of $i$ in terms of lower powers to simplify the given expression. Otherwise, we won’t be able to solve this question. $i$ represents the square root of unity. It is the root of the equation ${{x}^{2}}+1=0$. It denotes the imaginary part of complex numbers.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

