
What is the value of expression $\dfrac{{(2\tan 4 + 3\cot 4)(2\cot 4 + 3\tan 4)}}{{24{{\cot }^2}8 + 25}}$ is,
A. 1
B. 2
C. 3
D. 4
Answer
585.3k+ views
Hint: Start by converting all the trigonometric quantities in terms of sin and cos ,Take L.C.M. and simplify . Use the trigonometric identities and formulas for ease of calculation and simplification .Re -arrange the terms , so that it becomes easy to recognize and solve.
Complete step-by-step answer:
In this question, it is given to us that we have to find the value of the expression, $\dfrac{{(2\tan 4 + 3\cot 4)(2\cot 4 + 3\tan 4)}}{{24{{\cot }^2}8 + 25}}$
Expressing the above in terms of sin, cos ,we get
\[\dfrac{{(2\dfrac{{\sin 4}}{{\cos 4}} + 3\dfrac{{\cos 4}}{{\sin 4}})(2\dfrac{{\cos 4}}{{\sin 4}} + 3\dfrac{{\sin 4}}{{\cos 4}})}}{{24{{\left( {\dfrac{{\cos 8}}{{\sin 8}}} \right)}^2} + 25}}\]
Taking L.C.M and simplifying , we get
\[\dfrac{{(\dfrac{{2{{\sin }^2}4 + 3{{\cos }^2}4}}{{\cos 4\sin 4}})(\dfrac{{2{{\cos }^2}4 + 3{{\sin }^2}4}}{{\sin 4\cos 4}})}}{{\dfrac{{24{{\cos }^2}8 + 25{{\sin }^2}8}}{{{{\sin }^2}8}}}}\]
Now , we can break few of the terms in order to simplify more, we get
\[\dfrac{{\left( {\dfrac{{2{{\sin }^2}4 + 2{{\cos }^2}4 + {{\cos }^2}4}}{{\cos 4\sin 4}}} \right)\left( {\dfrac{{2{{\cos }^2}4 + 2{{\sin }^2}4 + {{\sin }^2}4}}{{\sin 4\cos 4}}} \right)}}{{\dfrac{{24{{\cos }^2}8 + 24{{\sin }^2}8 + {{\sin }^2}8}}{{{{\sin }^2}8}}}}\]
We know, ${\sin ^2}\theta + {\cos ^2}\theta = 1$
\[\dfrac{{\left( {\dfrac{{2 + {{\cos }^2}4}}{{\cos 4\sin 4}}} \right)\left( {\dfrac{{2 + {{\sin }^2}4}}{{\sin 4\cos 4}}} \right)}}{{\dfrac{{24 + {{\sin }^2}8}}{{{{\sin }^2}8}}}}\]
Now , further breaking sin 8 as sin 2(4) , we get
\[\dfrac{{\left( {\dfrac{{2 + {{\cos }^2}4}}{{\cos 4\sin 4}}} \right)\left( {\dfrac{{2 + {{\sin }^2}4}}{{\sin 4\cos 4}}} \right)}}{{\dfrac{{24 + {{\sin }^2}2(4)}}{{{{\sin }^2}2(4)}}}}\]
Re- arranging the numerator and denominators , we get
\[\dfrac{{\left( {2 + {{\cos }^2}4} \right)\left( {2 + {{\sin }^2}4} \right)\left( {{{\sin }^2}2(4)} \right)}}{{\left( {24 + {{\sin }^2}2(4)} \right)\left( {{{\cos }^2}4{{\sin }^2}4} \right)}}\]
Now , we will use the formula $\sin 2\theta = 2\sin \theta \cos \theta $
\[\dfrac{{\left( {2 + {{\cos }^2}4} \right)\left( {2 + {{\sin }^2}4} \right){{\left( {2\sin 4\cos 4} \right)}^2}}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)\left( {{{\cos }^2}4{{\sin }^2}4} \right)}}\]
By simplification, we will get:
\[\dfrac{{\left( {2 + {{\cos }^2}4} \right)\left( {2 + {{\sin }^2}4} \right)4}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)}}\]
By multiplying, we will get
$
\dfrac{{16 + 8{{\sin }^2}4 + 8{{\cos }^2}4 + 4{{\sin }^2}4{{\cos }^2}4}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)}} \\
\Rightarrow \dfrac{{16 + 8({{\sin }^2}4 + {{\cos }^2}4) + 4{{\sin }^2}4{{\cos }^2}4}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)}} \\
\\
$
Using the identity, ${\sin ^2}\theta + {\cos ^2}\theta = 1$
$
\Rightarrow \dfrac{{16 + 8 + 4{{\sin }^2}4{{\cos }^2}4}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)}} \\
\Rightarrow \dfrac{{24 + 4{{\sin }^2}4{{\cos }^2}4}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)}} \\
= 1 \\
\\
$
So, the correct answer is “Option A”.
Note: In this particular question, the most used formula is $\sin 2\theta = 2\sin \theta \cos \theta $. It should be noted that in such a type of question we have to use trigonometric identities like ${\sin ^2}\theta + {\cos ^2}\theta = 1$ . By using these basics one can easily solve these types of questions.
Complete step-by-step answer:
In this question, it is given to us that we have to find the value of the expression, $\dfrac{{(2\tan 4 + 3\cot 4)(2\cot 4 + 3\tan 4)}}{{24{{\cot }^2}8 + 25}}$
Expressing the above in terms of sin, cos ,we get
\[\dfrac{{(2\dfrac{{\sin 4}}{{\cos 4}} + 3\dfrac{{\cos 4}}{{\sin 4}})(2\dfrac{{\cos 4}}{{\sin 4}} + 3\dfrac{{\sin 4}}{{\cos 4}})}}{{24{{\left( {\dfrac{{\cos 8}}{{\sin 8}}} \right)}^2} + 25}}\]
Taking L.C.M and simplifying , we get
\[\dfrac{{(\dfrac{{2{{\sin }^2}4 + 3{{\cos }^2}4}}{{\cos 4\sin 4}})(\dfrac{{2{{\cos }^2}4 + 3{{\sin }^2}4}}{{\sin 4\cos 4}})}}{{\dfrac{{24{{\cos }^2}8 + 25{{\sin }^2}8}}{{{{\sin }^2}8}}}}\]
Now , we can break few of the terms in order to simplify more, we get
\[\dfrac{{\left( {\dfrac{{2{{\sin }^2}4 + 2{{\cos }^2}4 + {{\cos }^2}4}}{{\cos 4\sin 4}}} \right)\left( {\dfrac{{2{{\cos }^2}4 + 2{{\sin }^2}4 + {{\sin }^2}4}}{{\sin 4\cos 4}}} \right)}}{{\dfrac{{24{{\cos }^2}8 + 24{{\sin }^2}8 + {{\sin }^2}8}}{{{{\sin }^2}8}}}}\]
We know, ${\sin ^2}\theta + {\cos ^2}\theta = 1$
\[\dfrac{{\left( {\dfrac{{2 + {{\cos }^2}4}}{{\cos 4\sin 4}}} \right)\left( {\dfrac{{2 + {{\sin }^2}4}}{{\sin 4\cos 4}}} \right)}}{{\dfrac{{24 + {{\sin }^2}8}}{{{{\sin }^2}8}}}}\]
Now , further breaking sin 8 as sin 2(4) , we get
\[\dfrac{{\left( {\dfrac{{2 + {{\cos }^2}4}}{{\cos 4\sin 4}}} \right)\left( {\dfrac{{2 + {{\sin }^2}4}}{{\sin 4\cos 4}}} \right)}}{{\dfrac{{24 + {{\sin }^2}2(4)}}{{{{\sin }^2}2(4)}}}}\]
Re- arranging the numerator and denominators , we get
\[\dfrac{{\left( {2 + {{\cos }^2}4} \right)\left( {2 + {{\sin }^2}4} \right)\left( {{{\sin }^2}2(4)} \right)}}{{\left( {24 + {{\sin }^2}2(4)} \right)\left( {{{\cos }^2}4{{\sin }^2}4} \right)}}\]
Now , we will use the formula $\sin 2\theta = 2\sin \theta \cos \theta $
\[\dfrac{{\left( {2 + {{\cos }^2}4} \right)\left( {2 + {{\sin }^2}4} \right){{\left( {2\sin 4\cos 4} \right)}^2}}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)\left( {{{\cos }^2}4{{\sin }^2}4} \right)}}\]
By simplification, we will get:
\[\dfrac{{\left( {2 + {{\cos }^2}4} \right)\left( {2 + {{\sin }^2}4} \right)4}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)}}\]
By multiplying, we will get
$
\dfrac{{16 + 8{{\sin }^2}4 + 8{{\cos }^2}4 + 4{{\sin }^2}4{{\cos }^2}4}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)}} \\
\Rightarrow \dfrac{{16 + 8({{\sin }^2}4 + {{\cos }^2}4) + 4{{\sin }^2}4{{\cos }^2}4}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)}} \\
\\
$
Using the identity, ${\sin ^2}\theta + {\cos ^2}\theta = 1$
$
\Rightarrow \dfrac{{16 + 8 + 4{{\sin }^2}4{{\cos }^2}4}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)}} \\
\Rightarrow \dfrac{{24 + 4{{\sin }^2}4{{\cos }^2}4}}{{\left( {24 + 4{{\sin }^2}4{{\cos }^2}4} \right)}} \\
= 1 \\
\\
$
So, the correct answer is “Option A”.
Note: In this particular question, the most used formula is $\sin 2\theta = 2\sin \theta \cos \theta $. It should be noted that in such a type of question we have to use trigonometric identities like ${\sin ^2}\theta + {\cos ^2}\theta = 1$ . By using these basics one can easily solve these types of questions.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

