
What is the value of expression?
${\cos ^2}10 - \cos 10\cos 50 + {\cos ^2}50$
$
(a) {\text{ }}\dfrac{3}{4} \\
(b) {\text{ }}\dfrac{1}{3} \\
(c) {\text{ }}\dfrac{3}{2} \\
(d) {\text{ 0}} \\
$
Answer
520.5k+ views
Hint: In this question convert the $\cos {50^0}$terms into $\cos (60 - 10)$terms so that the basic trigonometric identity of $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$ can be used, further basic identities like ${\sin ^2}x + {\cos ^2}x = 1$ will help solving the equation.
Complete Step-by-Step solution:
Given trigonometric equation is
${\cos ^2}10 - \cos 10\cos 50 + {\cos ^2}50$
Now the above equation is written as
$ \Rightarrow {\cos ^2}10 - \cos 10\cos \left( {60 - 10} \right) + {\cos ^2}\left( {60 - 10} \right)$
Now as we know $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$ so use this property in above equation we have,
$ \Rightarrow {\cos ^2}10 - \cos 10\left[ {\cos 60\cos 10 + \sin 60\sin 10} \right] + {\left[ {\cos 60\cos 10 + \sin 60\sin 10} \right]^2}$
Now as we know $\cos 60 = \dfrac{1}{2},\sin 60 = \dfrac{{\sqrt 3 }}{2}$ so substitute these values we have,
$ \Rightarrow {\cos ^2}10 - \cos 10\left[ {\dfrac{1}{2} \times \cos 10 + \dfrac{{\sqrt 3 }}{2} \times \sin 10} \right] + {\left[ {\dfrac{1}{2} \times \cos 10 + \dfrac{{\sqrt 3 }}{2} \times \sin 10} \right]^2}$
Now simplify the above equation we have,
$ \Rightarrow {\cos ^2}10 - \dfrac{1}{2} \times {\cos ^2}10 - \dfrac{{\sqrt 3 }}{2} \times \sin 10\cos 10 + \left[ {\dfrac{1}{4} \times {{\cos }^2}10 + \dfrac{3}{4} \times {{\sin }^2}10 + \dfrac{{\sqrt 3 }}{2}\sin 10\cos 10} \right]$
Now as we know ${\sin ^2}10 = 1 - {\cos ^2}10$ so substitute this value in above equation and $\dfrac{{\sqrt 3 }}{2} \times \sin 10\cos 10$ term is cancel out so we have,
$ \Rightarrow {\cos ^2}10 - \dfrac{{{{\cos }^2}10}}{2} + \left[ {\dfrac{{{{\cos }^2}10}}{4} + \dfrac{3}{4} \times \left( {1 - {{\cos }^2}10} \right)} \right]$
Now again simplify the above equation we have,
$ \Rightarrow {\cos ^2}10 - \dfrac{{{{\cos }^2}10}}{2} + \dfrac{{{{\cos }^2}10}}{4} + \dfrac{3}{4} - \dfrac{{3{{\cos }^2}10}}{4}$
$ \Rightarrow {\cos ^2}10 - \left( {\dfrac{1}{2} - \dfrac{1}{4} + \dfrac{3}{4}} \right){\cos ^2}10 + \dfrac{3}{4}$
$ \Rightarrow {\cos ^2}10 - \left( {\dfrac{1}{2} + \dfrac{1}{2}} \right){\cos ^2}10 + \dfrac{3}{4}$
$ \Rightarrow {\cos ^2}10 - {\cos ^2}10 + \dfrac{3}{4}$
$ \Rightarrow \dfrac{3}{4}$
So this is the required answer.
Hence option (A) is correct.
Note: It is always advisable to remember the trigonometric identities. Although mugging up so many identities isn’t this easy but these identities are very useful for such formula based questions, as these also help saving a lot of time. So, keep practicing.
Complete Step-by-Step solution:
Given trigonometric equation is
${\cos ^2}10 - \cos 10\cos 50 + {\cos ^2}50$
Now the above equation is written as
$ \Rightarrow {\cos ^2}10 - \cos 10\cos \left( {60 - 10} \right) + {\cos ^2}\left( {60 - 10} \right)$
Now as we know $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$ so use this property in above equation we have,
$ \Rightarrow {\cos ^2}10 - \cos 10\left[ {\cos 60\cos 10 + \sin 60\sin 10} \right] + {\left[ {\cos 60\cos 10 + \sin 60\sin 10} \right]^2}$
Now as we know $\cos 60 = \dfrac{1}{2},\sin 60 = \dfrac{{\sqrt 3 }}{2}$ so substitute these values we have,
$ \Rightarrow {\cos ^2}10 - \cos 10\left[ {\dfrac{1}{2} \times \cos 10 + \dfrac{{\sqrt 3 }}{2} \times \sin 10} \right] + {\left[ {\dfrac{1}{2} \times \cos 10 + \dfrac{{\sqrt 3 }}{2} \times \sin 10} \right]^2}$
Now simplify the above equation we have,
$ \Rightarrow {\cos ^2}10 - \dfrac{1}{2} \times {\cos ^2}10 - \dfrac{{\sqrt 3 }}{2} \times \sin 10\cos 10 + \left[ {\dfrac{1}{4} \times {{\cos }^2}10 + \dfrac{3}{4} \times {{\sin }^2}10 + \dfrac{{\sqrt 3 }}{2}\sin 10\cos 10} \right]$
Now as we know ${\sin ^2}10 = 1 - {\cos ^2}10$ so substitute this value in above equation and $\dfrac{{\sqrt 3 }}{2} \times \sin 10\cos 10$ term is cancel out so we have,
$ \Rightarrow {\cos ^2}10 - \dfrac{{{{\cos }^2}10}}{2} + \left[ {\dfrac{{{{\cos }^2}10}}{4} + \dfrac{3}{4} \times \left( {1 - {{\cos }^2}10} \right)} \right]$
Now again simplify the above equation we have,
$ \Rightarrow {\cos ^2}10 - \dfrac{{{{\cos }^2}10}}{2} + \dfrac{{{{\cos }^2}10}}{4} + \dfrac{3}{4} - \dfrac{{3{{\cos }^2}10}}{4}$
$ \Rightarrow {\cos ^2}10 - \left( {\dfrac{1}{2} - \dfrac{1}{4} + \dfrac{3}{4}} \right){\cos ^2}10 + \dfrac{3}{4}$
$ \Rightarrow {\cos ^2}10 - \left( {\dfrac{1}{2} + \dfrac{1}{2}} \right){\cos ^2}10 + \dfrac{3}{4}$
$ \Rightarrow {\cos ^2}10 - {\cos ^2}10 + \dfrac{3}{4}$
$ \Rightarrow \dfrac{3}{4}$
So this is the required answer.
Hence option (A) is correct.
Note: It is always advisable to remember the trigonometric identities. Although mugging up so many identities isn’t this easy but these identities are very useful for such formula based questions, as these also help saving a lot of time. So, keep practicing.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
A number is chosen from 1 to 20 Find the probabili-class-10-maths-CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE
