Why is the value of acceleration due to gravity zero at the centre of the earth? Prove with mathematical calculations.
Answer
Verified
408.9k+ views
Hint: Gravity is the force which pulls the objects down towards the ground and acceleration produced by this force is called the acceleration due to gravity.Gravitational acceleration is a quantity of vector, that is it has both magnitude and direction.
Complete step by step answer:
Acceleration due to gravity at the surface of earth is approximately \[9.8\,m/{{s}^{2}}\]. It is not the same everywhere. It keeps on decreasing as we go above the surface of earth.
As we go below the surface of earth, the variation in g(acceleration due to gravity) is given by:
\[g'=g\left( 1-\dfrac{h}{{{R}_{e}}} \right)\]
where,
\[g'=\] Actual acceleration due to gravity at a depth ‘h’ from the surface of earth
\[g=\] Acceleration due to gravity at the surface of earth \[=9.8m/{{s}^{2}}\]
\[h=\] Distance from the surface of the earth
\[\operatorname{R_e}=\] Radius of the earth
Now, at the centre of earth, \[h=\operatorname{Re}\]
\[g'=g\left( 1-\dfrac{{{R}_{e}}}{{{R}_{e}}} \right)\]
\[\therefore g'=0\]
Therefore, acceleration due to gravity at the centre of the earth is \[0\] and it keeps on increasing till we reach at the surface of the earth and after that it keeps on decreasing.
Note: Logically, we can understand this by, when we move inside the earth, the mass that exerts gravitational force on us decreases and hence at the centre of the earth the acceleration due to gravity becomes zero. Variation of g as we go above the surface of the earth is given by \[g'=\dfrac{g}{{{\left( 1+\dfrac{h}{{{R}_{e}}} \right)}^{2}}}\].
Complete step by step answer:
Acceleration due to gravity at the surface of earth is approximately \[9.8\,m/{{s}^{2}}\]. It is not the same everywhere. It keeps on decreasing as we go above the surface of earth.
As we go below the surface of earth, the variation in g(acceleration due to gravity) is given by:
\[g'=g\left( 1-\dfrac{h}{{{R}_{e}}} \right)\]
where,
\[g'=\] Actual acceleration due to gravity at a depth ‘h’ from the surface of earth
\[g=\] Acceleration due to gravity at the surface of earth \[=9.8m/{{s}^{2}}\]
\[h=\] Distance from the surface of the earth
\[\operatorname{R_e}=\] Radius of the earth
Now, at the centre of earth, \[h=\operatorname{Re}\]
\[g'=g\left( 1-\dfrac{{{R}_{e}}}{{{R}_{e}}} \right)\]
\[\therefore g'=0\]
Therefore, acceleration due to gravity at the centre of the earth is \[0\] and it keeps on increasing till we reach at the surface of the earth and after that it keeps on decreasing.
Note: Logically, we can understand this by, when we move inside the earth, the mass that exerts gravitational force on us decreases and hence at the centre of the earth the acceleration due to gravity becomes zero. Variation of g as we go above the surface of the earth is given by \[g'=\dfrac{g}{{{\left( 1+\dfrac{h}{{{R}_{e}}} \right)}^{2}}}\].
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE