
What is the value of \[{(a + b)^3} - {(a - b)^3}\] ?
(a). \[{b^3} + 3{a^2}b\]
(b). \[2({b^3} + 3{a^2}b)\]
(c). \[2({a^3} + 3a{b^2})\]
(d). 0
Answer
517.2k+ views
Hint: Recall the formula for \[{(a + b)^3}\] and \[{(a - b)^3}\], which is \[{(a + b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\] , and \[{(a - b)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\] respectively. Use these formulae to evaluate \[{(a + b)^3} - {(a - b)^3}\].
Complete Step-by-Step solution:
In this problem, we need to evaluate \[{(a + b)^3} - {(a - b)^3}\]. For that first, we find the expansion of \[{(a + b)^3}\] and \[{(a - b)^3}\] and then evaluate them.
First, let us evaluate \[{(a + b)^3}\]. We know that \[{(a + b)^3}\] can be written as \[(a + b)(a + b)(a + b)\]. Hence, we have:
$\Rightarrow$ \[{(a + b)^3} = (a + b)(a + b)(a + b)\]
We multiply the first two terms which is nothing but the expression for \[{(a + b)^2}\].
$\Rightarrow$ \[{(a + b)^3} = (a.a + a.b + b.a + b.b)(a + b)\]
Simplifying the above equation, we get as follows:
$\Rightarrow$ \[{(a + b)^3} = ({a^2} + 2ab + {b^2})(a + b)\]
Now, we multiply the remaining terms to get the final expression. Hence, we have:
$\Rightarrow$ \[{(a + b)^3} = {a^2}.a + 2ab.a + {b^2}.a + {a^2}.b + 2ab.b + {b^2}.b\]
Simplifying the above equation, we get:
$\Rightarrow$ \[{(a + b)^3} = {a^3} + 2{a^2}b + a{b^2} + {a^2}b + 2a{b^2} + {b^3}\]
Adding the common terms together, we have:
$\Rightarrow$ \[{(a + b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}.............(1)\]
Now, let us evaluate \[{(a - b)^3}\]. We know that \[{(a - b)^3}\] can be written as \[(a - b)(a - b)(a - b)\]. Hence, we have:
$\Rightarrow$ \[{(a - b)^3} = (a - b)(a - b)(a - b)\]
We multiply the first two terms which is nothing but the expression for \[{(a - b)^2}\].
$\Rightarrow$ \[{(a - b)^3} = (a.a - a.b - b.a + b.b)(a - b)\]
Simplifying the above equation, we get as follows:
$\Rightarrow$ \[{(a - b)^3} = ({a^2} - 2ab + {b^2})(a - b)\]
Now, we multiply the remaining terms to get the final expression. Hence, we have:
$\Rightarrow$ \[{(a - b)^3} = {a^2}.a - 2ab.a + {b^2}.a - {a^2}.b + 2ab.b - {b^2}.b\]
Simplifying the above equation, we get:
$\Rightarrow$ \[{(a - b)^3} = {a^3} - 2{a^2}b + a{b^2} - {a^2}b + 2a{b^2} - {b^3}\]
Adding the common terms together, we have:
$\Rightarrow$ \[{(a - b)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}.............(2)\]
Now, we subtract equation (2) from equation (1) to obtain the value of \[{(a + b)^3} - {(a - b)^3}\]. Hence, we have as follows:
$\Rightarrow$ \[{(a + b)^3} - {(a - b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} - ({a^3} - 3{a^2}b + 3a{b^2} - {b^3})\]
Taking the minus sign inside the bracket, we get:
$\Rightarrow$ \[{(a + b)^3} - {(a - b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} - {a^3} + 3{a^2}b - 3a{b^2} + {b^3}\]
Canceling the common terms, we have:
$\Rightarrow$ \[{(a + b)^3} - {(a - b)^3} = 3a{b^2} + {b^3} + 3{a^2}b + {b^3}\]
Simplifying, we have:
$\Rightarrow$ \[{(a + b)^3} - {(a - b)^3} = 2{b^3} + 6{a^2}b\]
Taking 2 as a common term outside, we have:
$\Rightarrow$ \[{(a + b)^3} - {(a - b)^3} = 2({b^3} + 3{a^2}b)\]
Hence, option (b) is the correct answer.
Note: Note that instead of subtracting the two terms, if you add, then you will get the result as in option (c), which is wrong. Hence, evaluate carefully.
Complete Step-by-Step solution:
In this problem, we need to evaluate \[{(a + b)^3} - {(a - b)^3}\]. For that first, we find the expansion of \[{(a + b)^3}\] and \[{(a - b)^3}\] and then evaluate them.
First, let us evaluate \[{(a + b)^3}\]. We know that \[{(a + b)^3}\] can be written as \[(a + b)(a + b)(a + b)\]. Hence, we have:
$\Rightarrow$ \[{(a + b)^3} = (a + b)(a + b)(a + b)\]
We multiply the first two terms which is nothing but the expression for \[{(a + b)^2}\].
$\Rightarrow$ \[{(a + b)^3} = (a.a + a.b + b.a + b.b)(a + b)\]
Simplifying the above equation, we get as follows:
$\Rightarrow$ \[{(a + b)^3} = ({a^2} + 2ab + {b^2})(a + b)\]
Now, we multiply the remaining terms to get the final expression. Hence, we have:
$\Rightarrow$ \[{(a + b)^3} = {a^2}.a + 2ab.a + {b^2}.a + {a^2}.b + 2ab.b + {b^2}.b\]
Simplifying the above equation, we get:
$\Rightarrow$ \[{(a + b)^3} = {a^3} + 2{a^2}b + a{b^2} + {a^2}b + 2a{b^2} + {b^3}\]
Adding the common terms together, we have:
$\Rightarrow$ \[{(a + b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}.............(1)\]
Now, let us evaluate \[{(a - b)^3}\]. We know that \[{(a - b)^3}\] can be written as \[(a - b)(a - b)(a - b)\]. Hence, we have:
$\Rightarrow$ \[{(a - b)^3} = (a - b)(a - b)(a - b)\]
We multiply the first two terms which is nothing but the expression for \[{(a - b)^2}\].
$\Rightarrow$ \[{(a - b)^3} = (a.a - a.b - b.a + b.b)(a - b)\]
Simplifying the above equation, we get as follows:
$\Rightarrow$ \[{(a - b)^3} = ({a^2} - 2ab + {b^2})(a - b)\]
Now, we multiply the remaining terms to get the final expression. Hence, we have:
$\Rightarrow$ \[{(a - b)^3} = {a^2}.a - 2ab.a + {b^2}.a - {a^2}.b + 2ab.b - {b^2}.b\]
Simplifying the above equation, we get:
$\Rightarrow$ \[{(a - b)^3} = {a^3} - 2{a^2}b + a{b^2} - {a^2}b + 2a{b^2} - {b^3}\]
Adding the common terms together, we have:
$\Rightarrow$ \[{(a - b)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}.............(2)\]
Now, we subtract equation (2) from equation (1) to obtain the value of \[{(a + b)^3} - {(a - b)^3}\]. Hence, we have as follows:
$\Rightarrow$ \[{(a + b)^3} - {(a - b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} - ({a^3} - 3{a^2}b + 3a{b^2} - {b^3})\]
Taking the minus sign inside the bracket, we get:
$\Rightarrow$ \[{(a + b)^3} - {(a - b)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3} - {a^3} + 3{a^2}b - 3a{b^2} + {b^3}\]
Canceling the common terms, we have:
$\Rightarrow$ \[{(a + b)^3} - {(a - b)^3} = 3a{b^2} + {b^3} + 3{a^2}b + {b^3}\]
Simplifying, we have:
$\Rightarrow$ \[{(a + b)^3} - {(a - b)^3} = 2{b^3} + 6{a^2}b\]
Taking 2 as a common term outside, we have:
$\Rightarrow$ \[{(a + b)^3} - {(a - b)^3} = 2({b^3} + 3{a^2}b)\]
Hence, option (b) is the correct answer.
Note: Note that instead of subtracting the two terms, if you add, then you will get the result as in option (c), which is wrong. Hence, evaluate carefully.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Find the area of the minor segment of a circle of radius class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

State BPT theorem and prove it class 10 maths CBSE

What is the relation between mean median and mode a class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE
