What is the value of \[0.\overline {57} \]
A. \[\dfrac{{57}}{{10}}\]
B. \[\dfrac{{77}}{{99}}\]
C. \[\dfrac{{19}}{{33}}\]
D. \[\dfrac{{52}}{9}\]
Answer
263.1k+ views
Hint:In order to find the given value, we should first know what this bar is over \[57\]. This bar is known as the bar notation, which says that the numbers having a bar over it is being repeated over and over again. For example: \[0.\overline x = 0.xxxxxxxxxxx........\] and it continues.
Complete step by step answer:
Naming the given value as \[x\]; so, it becomes \[x = 0.\overline {57} \].
Since, it is a bar notation, so the value can be written as
\[x = 0.57575757575757.....\]………..(1)
Since the bar is on two consecutive digits and we need the same value after decimal, we are moving the decimal point towards right by two digits.
For that we need to multiply the value (1) by \[100\].
So, multiplying the equation (1) by \[100\], and we get:
\[100x = 100 \times \left( {0.57575757575757.....} \right)\]
\[ \Rightarrow 100x = 57.575757575757......\]………(2)
Since, we need to simplify the terms in order to get the value of \[x\]. So, subtracting (1) from (2), and we get:
\[100x - x = \left( {57.575757575757......} \right) - \left( {0.575757575757......} \right)\]
Solving the left-hand side and the right side separately, and we can see that the values after decimals are the same and can be cancelled out from simple subtraction. So, we get:
\[100x - x = \left( {57.575757575757......} \right) - \left( {0.575757575757......} \right) \\
\Rightarrow 99x = 57 \\ \]
Dividing both the sides by \[99\] in order to get the value of \[x\] , and we get:
\[\Rightarrow \dfrac{{99x}}{{99}} = \dfrac{{57}}{{99}} \\
\Rightarrow x = \dfrac{{57}}{{99}} \\ \]
Since, we can see that the value on the right-side can be further simplified, by dividing both the numerator and denominator by \[3\] as it’s the highest factor that can divide both of them. So, dividing and multiplying the right-side by\[3\], we get:
\[\Rightarrow x = \dfrac{{\dfrac{{57}}{3}}}{{\dfrac{{99}}{3}}} \\
\Rightarrow x = \dfrac{{19}}{{33}} \\
\therefore x = 0.\overline {57}\]
Therefore, the value of \[0.\overline {57} \] and the correct answer is option C.
Note:Do not commit a mistake by repeating only \[5\] or \[7\] from \[0.\overline {57} \], as because the bar is upon both \[5\] and \[7\], so must be repeated in the same order. Since, the bar was on two digits that’s why we multiplied the value by \[100\], in order to take the two digits out. If the bar is on one digit then we can multiply by \[10\], then subtract.
Complete step by step answer:
Naming the given value as \[x\]; so, it becomes \[x = 0.\overline {57} \].
Since, it is a bar notation, so the value can be written as
\[x = 0.57575757575757.....\]………..(1)
Since the bar is on two consecutive digits and we need the same value after decimal, we are moving the decimal point towards right by two digits.
For that we need to multiply the value (1) by \[100\].
So, multiplying the equation (1) by \[100\], and we get:
\[100x = 100 \times \left( {0.57575757575757.....} \right)\]
\[ \Rightarrow 100x = 57.575757575757......\]………(2)
Since, we need to simplify the terms in order to get the value of \[x\]. So, subtracting (1) from (2), and we get:
\[100x - x = \left( {57.575757575757......} \right) - \left( {0.575757575757......} \right)\]
Solving the left-hand side and the right side separately, and we can see that the values after decimals are the same and can be cancelled out from simple subtraction. So, we get:
\[100x - x = \left( {57.575757575757......} \right) - \left( {0.575757575757......} \right) \\
\Rightarrow 99x = 57 \\ \]
Dividing both the sides by \[99\] in order to get the value of \[x\] , and we get:
\[\Rightarrow \dfrac{{99x}}{{99}} = \dfrac{{57}}{{99}} \\
\Rightarrow x = \dfrac{{57}}{{99}} \\ \]
Since, we can see that the value on the right-side can be further simplified, by dividing both the numerator and denominator by \[3\] as it’s the highest factor that can divide both of them. So, dividing and multiplying the right-side by\[3\], we get:
\[\Rightarrow x = \dfrac{{\dfrac{{57}}{3}}}{{\dfrac{{99}}{3}}} \\
\Rightarrow x = \dfrac{{19}}{{33}} \\
\therefore x = 0.\overline {57}\]
Therefore, the value of \[0.\overline {57} \] and the correct answer is option C.
Note:Do not commit a mistake by repeating only \[5\] or \[7\] from \[0.\overline {57} \], as because the bar is upon both \[5\] and \[7\], so must be repeated in the same order. Since, the bar was on two digits that’s why we multiplied the value by \[100\], in order to take the two digits out. If the bar is on one digit then we can multiply by \[10\], then subtract.
Last updated date: 28th Sep 2023
•
Total views: 263.1k
•
Views today: 6.63k
Recently Updated Pages
What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

An alternating current can be produced by A a transformer class 12 physics CBSE

What is the value of 01+23+45+67++1617+1819+20 class 11 maths CBSE

Give 10 examples for herbs , shrubs , climbers , creepers
