
What is the value of \[0.\overline {57} \]
A. \[\dfrac{{57}}{{10}}\]
B. \[\dfrac{{77}}{{99}}\]
C. \[\dfrac{{19}}{{33}}\]
D. \[\dfrac{{52}}{9}\]
Answer
520.2k+ views
Hint:In order to find the given value, we should first know what this bar is over \[57\]. This bar is known as the bar notation, which says that the numbers having a bar over it is being repeated over and over again. For example: \[0.\overline x = 0.xxxxxxxxxxx........\] and it continues.
Complete step by step answer:
Naming the given value as \[x\]; so, it becomes \[x = 0.\overline {57} \].
Since, it is a bar notation, so the value can be written as
\[x = 0.57575757575757.....\]………..(1)
Since the bar is on two consecutive digits and we need the same value after decimal, we are moving the decimal point towards right by two digits.
For that we need to multiply the value (1) by \[100\].
So, multiplying the equation (1) by \[100\], and we get:
\[100x = 100 \times \left( {0.57575757575757.....} \right)\]
\[ \Rightarrow 100x = 57.575757575757......\]………(2)
Since, we need to simplify the terms in order to get the value of \[x\]. So, subtracting (1) from (2), and we get:
\[100x - x = \left( {57.575757575757......} \right) - \left( {0.575757575757......} \right)\]
Solving the left-hand side and the right side separately, and we can see that the values after decimals are the same and can be cancelled out from simple subtraction. So, we get:
\[100x - x = \left( {57.575757575757......} \right) - \left( {0.575757575757......} \right) \\
\Rightarrow 99x = 57 \\ \]
Dividing both the sides by \[99\] in order to get the value of \[x\] , and we get:
\[\Rightarrow \dfrac{{99x}}{{99}} = \dfrac{{57}}{{99}} \\
\Rightarrow x = \dfrac{{57}}{{99}} \\ \]
Since, we can see that the value on the right-side can be further simplified, by dividing both the numerator and denominator by \[3\] as it’s the highest factor that can divide both of them. So, dividing and multiplying the right-side by\[3\], we get:
\[\Rightarrow x = \dfrac{{\dfrac{{57}}{3}}}{{\dfrac{{99}}{3}}} \\
\Rightarrow x = \dfrac{{19}}{{33}} \\
\therefore x = 0.\overline {57}\]
Therefore, the value of \[0.\overline {57} \] and the correct answer is option C.
Note:Do not commit a mistake by repeating only \[5\] or \[7\] from \[0.\overline {57} \], as because the bar is upon both \[5\] and \[7\], so must be repeated in the same order. Since, the bar was on two digits that’s why we multiplied the value by \[100\], in order to take the two digits out. If the bar is on one digit then we can multiply by \[10\], then subtract.
Complete step by step answer:
Naming the given value as \[x\]; so, it becomes \[x = 0.\overline {57} \].
Since, it is a bar notation, so the value can be written as
\[x = 0.57575757575757.....\]………..(1)
Since the bar is on two consecutive digits and we need the same value after decimal, we are moving the decimal point towards right by two digits.
For that we need to multiply the value (1) by \[100\].
So, multiplying the equation (1) by \[100\], and we get:
\[100x = 100 \times \left( {0.57575757575757.....} \right)\]
\[ \Rightarrow 100x = 57.575757575757......\]………(2)
Since, we need to simplify the terms in order to get the value of \[x\]. So, subtracting (1) from (2), and we get:
\[100x - x = \left( {57.575757575757......} \right) - \left( {0.575757575757......} \right)\]
Solving the left-hand side and the right side separately, and we can see that the values after decimals are the same and can be cancelled out from simple subtraction. So, we get:
\[100x - x = \left( {57.575757575757......} \right) - \left( {0.575757575757......} \right) \\
\Rightarrow 99x = 57 \\ \]
Dividing both the sides by \[99\] in order to get the value of \[x\] , and we get:
\[\Rightarrow \dfrac{{99x}}{{99}} = \dfrac{{57}}{{99}} \\
\Rightarrow x = \dfrac{{57}}{{99}} \\ \]
Since, we can see that the value on the right-side can be further simplified, by dividing both the numerator and denominator by \[3\] as it’s the highest factor that can divide both of them. So, dividing and multiplying the right-side by\[3\], we get:
\[\Rightarrow x = \dfrac{{\dfrac{{57}}{3}}}{{\dfrac{{99}}{3}}} \\
\Rightarrow x = \dfrac{{19}}{{33}} \\
\therefore x = 0.\overline {57}\]
Therefore, the value of \[0.\overline {57} \] and the correct answer is option C.
Note:Do not commit a mistake by repeating only \[5\] or \[7\] from \[0.\overline {57} \], as because the bar is upon both \[5\] and \[7\], so must be repeated in the same order. Since, the bar was on two digits that’s why we multiplied the value by \[100\], in order to take the two digits out. If the bar is on one digit then we can multiply by \[10\], then subtract.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

What are the 12 elements of nature class 8 chemistry CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Convert 40circ C to Fahrenheit A 104circ F B 107circ class 8 maths CBSE

Advantages and disadvantages of science


