
Using\[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\], find
\[\begin{align}
& \left( i \right){{51}^{2}}-{{49}^{2}} \\
& \left( ii \right){{\left( 1.02 \right)}^{2}}-{{\left( 0.98 \right)}^{2}} \\
& \left( iii \right){{153}^{2}}-{{147}^{2}} \\
& \left( iv \right){{12.1}^{2}}-{{7.9}^{2}} \\
\end{align}\]
Answer
526.5k+ views
Hint: In order to solve the question, we use the formula in all the four parts, and find the values for all the options, here the \[a\]and \[b\]are replaced by the values as given in the four parts and then solved.
Complete step-by-step solution:
For solving this question, Let us first write the formula that is given in the question
\[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\]
In order to solve this, let us take all the parts one by one
i) For the first part, \[{{51}^{2}}-{{49}^{2}}\]
Here,
\[\begin{align}
& a=51 \\
& b=49 \\
\end{align}\]
Further solving, we get
\[\begin{align}
&\Rightarrow {{51}^{2}}-{{49}^{2}}=\left( 51+49 \right)\left( 51-49 \right) \\
& \Rightarrow {{51}^{2}}-{{49}^{2}}=100\times 2 \\
& \Rightarrow {{51}^{2}}-{{49}^{2}}=200 \\
\end{align}\]
ii) For the second part, which is given as
\[{{\left( 1.02 \right)}^{2}}-{{\left( 0.98 \right)}^{2}}\]
Here,
\[\begin{align}
& a=1.02 \\
& b=0.98 \\
\end{align}\]
Further solving, we get the solution as
\[\begin{align}
&\Rightarrow {{\left( 1.02 \right)}^{2}}-{{\left( 0.98 \right)}^{2}}=\left( 1.02+0.98 \right)\left( 1.02-0.98 \right) \\
& \Rightarrow {{\left( 1.02 \right)}^{2}}-{{\left( 0.98 \right)}^{2}}=2\times 0.04 \\
& \Rightarrow {{\left( 1.02 \right)}^{2}}-{{\left( 0.98 \right)}^{2}}=0.08 \\
\end{align}\]
iii) For third part, \[{{153}^{2}}-{{147}^{2}}\]
We get
\[\begin{align}
& a=153 \\
& b=147 \\
\end{align}\]
Further solving using the above formula, we get,
\[\begin{align}
&\Rightarrow {{\left( 153 \right)}^{2}}-{{\left( 147 \right)}^{2}}=\left( 153+147 \right)\left( 153-147 \right) \\
& \Rightarrow {{\left( 153 \right)}^{2}}-{{\left( 147 \right)}^{2}}=300\times 6 \\
& \Rightarrow {{\left( 153 \right)}^{2}}-{{\left( 147 \right)}^{2}}=1800 \\
\end{align}\]
iv) Now for the last part, we need to find the value for
\[{{12.1}^{2}}-{{7.9}^{2}}\]
Using the formula, if we solve this part,
\[\begin{align}
& {{12.1}^{2}}-{{7.9}^{2}}=\left( 12.1+7.9 \right)\left( 12.1-7.9 \right) \\
& \Rightarrow {{12.1}^{2}}-{{7.9}^{2}}=20\times 4.2 \\
& \Rightarrow {{12.1}^{2}}-{{7.9}^{2}}=84 \\
\end{align}\]
Hence, we have found the values for all the four parts as given.
Note: The formula \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\] is one of the formulae for the squares of the numbers, these formulae make it easier to calculate various values,
For all the parts given , calculate the values by simply putting the values in the place of the variables \[a\]and \[b\], then simplify the formula and calculate the final values.
Complete step-by-step solution:
For solving this question, Let us first write the formula that is given in the question
\[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\]
In order to solve this, let us take all the parts one by one
i) For the first part, \[{{51}^{2}}-{{49}^{2}}\]
Here,
\[\begin{align}
& a=51 \\
& b=49 \\
\end{align}\]
Further solving, we get
\[\begin{align}
&\Rightarrow {{51}^{2}}-{{49}^{2}}=\left( 51+49 \right)\left( 51-49 \right) \\
& \Rightarrow {{51}^{2}}-{{49}^{2}}=100\times 2 \\
& \Rightarrow {{51}^{2}}-{{49}^{2}}=200 \\
\end{align}\]
ii) For the second part, which is given as
\[{{\left( 1.02 \right)}^{2}}-{{\left( 0.98 \right)}^{2}}\]
Here,
\[\begin{align}
& a=1.02 \\
& b=0.98 \\
\end{align}\]
Further solving, we get the solution as
\[\begin{align}
&\Rightarrow {{\left( 1.02 \right)}^{2}}-{{\left( 0.98 \right)}^{2}}=\left( 1.02+0.98 \right)\left( 1.02-0.98 \right) \\
& \Rightarrow {{\left( 1.02 \right)}^{2}}-{{\left( 0.98 \right)}^{2}}=2\times 0.04 \\
& \Rightarrow {{\left( 1.02 \right)}^{2}}-{{\left( 0.98 \right)}^{2}}=0.08 \\
\end{align}\]
iii) For third part, \[{{153}^{2}}-{{147}^{2}}\]
We get
\[\begin{align}
& a=153 \\
& b=147 \\
\end{align}\]
Further solving using the above formula, we get,
\[\begin{align}
&\Rightarrow {{\left( 153 \right)}^{2}}-{{\left( 147 \right)}^{2}}=\left( 153+147 \right)\left( 153-147 \right) \\
& \Rightarrow {{\left( 153 \right)}^{2}}-{{\left( 147 \right)}^{2}}=300\times 6 \\
& \Rightarrow {{\left( 153 \right)}^{2}}-{{\left( 147 \right)}^{2}}=1800 \\
\end{align}\]
iv) Now for the last part, we need to find the value for
\[{{12.1}^{2}}-{{7.9}^{2}}\]
Using the formula, if we solve this part,
\[\begin{align}
& {{12.1}^{2}}-{{7.9}^{2}}=\left( 12.1+7.9 \right)\left( 12.1-7.9 \right) \\
& \Rightarrow {{12.1}^{2}}-{{7.9}^{2}}=20\times 4.2 \\
& \Rightarrow {{12.1}^{2}}-{{7.9}^{2}}=84 \\
\end{align}\]
Hence, we have found the values for all the four parts as given.
Note: The formula \[{{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)\] is one of the formulae for the squares of the numbers, these formulae make it easier to calculate various values,
For all the parts given , calculate the values by simply putting the values in the place of the variables \[a\]and \[b\], then simplify the formula and calculate the final values.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?


