
Using the limit process, find the area of the region between the graph $y = {x^2} + 1$ and the x-axis over the interval $[0,3]$?
Answer
453k+ views
Hint: We can calculate the area under the curve using thin rectangles. The accuracy of the approximation depends on the number of rectangles we use to approximate. We know that calculus deals with the infinite limit of a finite series of infinitesimally thin rectangles. Here we will use the concept of breaking the interval into subinterval and use the standard summation formula.
Definition of integration: we know that integrating a function between an interval $\int\limits_n^m {f\left( x \right)} dx$ gives the area under the curve between $x = n$ and $x = m$.
Standard summation formula: We use standard summation formula to find the area.
$
\sum\limits_{r = 1}^n {a = an} \\
\sum\limits_{r = 1}^n {{r^2}} = \dfrac{1}{6}n\left( {n + 1} \right)\left( {2n + 1} \right) \\
$
Complete step by step solution:
Use thin rectangles method to calculate the area.
$\int\limits_n^m {f\left( x \right)} = \mathop {\lim }\limits_{C \to \infty } \dfrac{{m - n}}{c}\sum\limits_{i = 1}^c {f\left( {n + i\dfrac{{m - n}}{c}} \right)} $
Break the interval $\left[ {0,3} \right]$ by using equally spacing.
$
\Delta = \left\{ {n + 0\left( {\dfrac{{m - n}}{c}} \right),n + 1\left( {\dfrac{{m - n}}{c}} \right),.......,n + c\left( {\dfrac{{m - n}}{c}} \right)} \right\} \\
\Rightarrow \Delta = \left\{ {n,n + 1\left( {\dfrac{{m - n}}{c}} \right),n + 2\left( {\dfrac{{m - n}}{c}} \right),....m} \right\} \\
$
Substitute $\left( {n = 0} \right)$and $\left( {m = 3} \right)$ in the formula and solve.
By definition of integral we have, $\int\limits_0^3 {\left( {{x^2} + 1} \right)} dx$ so,
$
\int\limits_0^3 {\left( {{x^2} + 1} \right)} dx = \mathop {\lim }\limits_{c \to \infty } \dfrac{3}{c}\sum\limits_{i = 1}^c {f\left( {0 + i.\dfrac{3}{n}} \right)} \\
= \mathop {\lim }\limits_{c \to \infty } \dfrac{3}{c}\sum\limits_{i = 1}^c {f\left( {\dfrac{{3i}}{c}} \right)} \\
= \mathop {\lim }\limits_{c \to \infty } \dfrac{3}{c}\sum\limits_{i = 1}^c {\left\{ {{{\left( {\dfrac{{3i}}{c}} \right)}^2} + 1} \right\}} \\
= \mathop {\lim }\limits_{c \to \infty } \dfrac{3}{c}\sum\limits_{i = 1}^c {\left\{ {\dfrac{{9{i^2}}}{{{c^2}}} + \sum\limits_{i = 1}^c 1 } \right\}} \\
$
Using the standard summation formula we have,
$
I = \mathop {\lim }\limits_{c \to \infty } \dfrac{3}{c}\left\{ {\dfrac{3}{{2{c^2}}}\left( {2{c^2} + 3c + 1} \right) + 1} \right\} \\
\Rightarrow I = \mathop {\lim }\limits_{c \to \infty } \dfrac{3}{{2{c^2}}}\left\{ {8{c^2} + 9c + 3} \right\} \\
\Rightarrow I = \mathop {\lim }\limits_{c \to \infty } \dfrac{{24{c^2} + 27c + 9}}{{2{c^2}}} \\
$
Now substitute the limit in the equation to find the area under the curve between [0,3].
$
I = \mathop {\lim }\limits_{c \to \infty } \dfrac{{24{c^2} + 27c + 9}}{{2{c^2}}} \\
\Rightarrow I = \left( {12 + \dfrac{{27}}{{2c}} + \dfrac{9}{{2{c^2}}}} \right) \\
\Rightarrow I = 12 \\
$
Therefore the area under the curve by using the process of limit is calculated and equals to 12.
Note: To find the area under the curve use the thin rectangles method, By using equal spacing formula to break the interval. The formula of breaking the interval is $\Delta = \left\{ {n + 0\left( {\dfrac{{m - n}}{c}} \right),n + 1\left( {\dfrac{{m - n}}{c}} \right),.......,n + c\left( {\dfrac{{m - n}}{c}} \right)} \right\}$.
Use the definition of integral formula $\left( {\int\limits_n^m {f\left( x \right)} = \mathop {\lim }\limits_{C \to \infty } \dfrac{{m - n}}{c}\sum\limits_{i = 1}^c {f\left( {n + i\dfrac{{m - n}}{c}} \right)} } \right)$ to calculate the area.
Definition of integration: we know that integrating a function between an interval $\int\limits_n^m {f\left( x \right)} dx$ gives the area under the curve between $x = n$ and $x = m$.
Standard summation formula: We use standard summation formula to find the area.
$
\sum\limits_{r = 1}^n {a = an} \\
\sum\limits_{r = 1}^n {{r^2}} = \dfrac{1}{6}n\left( {n + 1} \right)\left( {2n + 1} \right) \\
$
Complete step by step solution:
Use thin rectangles method to calculate the area.
$\int\limits_n^m {f\left( x \right)} = \mathop {\lim }\limits_{C \to \infty } \dfrac{{m - n}}{c}\sum\limits_{i = 1}^c {f\left( {n + i\dfrac{{m - n}}{c}} \right)} $
Break the interval $\left[ {0,3} \right]$ by using equally spacing.
$
\Delta = \left\{ {n + 0\left( {\dfrac{{m - n}}{c}} \right),n + 1\left( {\dfrac{{m - n}}{c}} \right),.......,n + c\left( {\dfrac{{m - n}}{c}} \right)} \right\} \\
\Rightarrow \Delta = \left\{ {n,n + 1\left( {\dfrac{{m - n}}{c}} \right),n + 2\left( {\dfrac{{m - n}}{c}} \right),....m} \right\} \\
$
Substitute $\left( {n = 0} \right)$and $\left( {m = 3} \right)$ in the formula and solve.
By definition of integral we have, $\int\limits_0^3 {\left( {{x^2} + 1} \right)} dx$ so,
$
\int\limits_0^3 {\left( {{x^2} + 1} \right)} dx = \mathop {\lim }\limits_{c \to \infty } \dfrac{3}{c}\sum\limits_{i = 1}^c {f\left( {0 + i.\dfrac{3}{n}} \right)} \\
= \mathop {\lim }\limits_{c \to \infty } \dfrac{3}{c}\sum\limits_{i = 1}^c {f\left( {\dfrac{{3i}}{c}} \right)} \\
= \mathop {\lim }\limits_{c \to \infty } \dfrac{3}{c}\sum\limits_{i = 1}^c {\left\{ {{{\left( {\dfrac{{3i}}{c}} \right)}^2} + 1} \right\}} \\
= \mathop {\lim }\limits_{c \to \infty } \dfrac{3}{c}\sum\limits_{i = 1}^c {\left\{ {\dfrac{{9{i^2}}}{{{c^2}}} + \sum\limits_{i = 1}^c 1 } \right\}} \\
$
Using the standard summation formula we have,
$
I = \mathop {\lim }\limits_{c \to \infty } \dfrac{3}{c}\left\{ {\dfrac{3}{{2{c^2}}}\left( {2{c^2} + 3c + 1} \right) + 1} \right\} \\
\Rightarrow I = \mathop {\lim }\limits_{c \to \infty } \dfrac{3}{{2{c^2}}}\left\{ {8{c^2} + 9c + 3} \right\} \\
\Rightarrow I = \mathop {\lim }\limits_{c \to \infty } \dfrac{{24{c^2} + 27c + 9}}{{2{c^2}}} \\
$
Now substitute the limit in the equation to find the area under the curve between [0,3].
$
I = \mathop {\lim }\limits_{c \to \infty } \dfrac{{24{c^2} + 27c + 9}}{{2{c^2}}} \\
\Rightarrow I = \left( {12 + \dfrac{{27}}{{2c}} + \dfrac{9}{{2{c^2}}}} \right) \\
\Rightarrow I = 12 \\
$
Therefore the area under the curve by using the process of limit is calculated and equals to 12.
Note: To find the area under the curve use the thin rectangles method, By using equal spacing formula to break the interval. The formula of breaking the interval is $\Delta = \left\{ {n + 0\left( {\dfrac{{m - n}}{c}} \right),n + 1\left( {\dfrac{{m - n}}{c}} \right),.......,n + c\left( {\dfrac{{m - n}}{c}} \right)} \right\}$.
Use the definition of integral formula $\left( {\int\limits_n^m {f\left( x \right)} = \mathop {\lim }\limits_{C \to \infty } \dfrac{{m - n}}{c}\sum\limits_{i = 1}^c {f\left( {n + i\dfrac{{m - n}}{c}} \right)} } \right)$ to calculate the area.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

Most of the Sinhalaspeaking people in Sri Lanka are class 12 social science CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

What I want should not be confused with total inactivity class 12 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
