
Using the limit definition how do you differentiate $f\left( x \right)=\dfrac{1}{\sqrt{x}}$
Answer
555.9k+ views
Hint: To find the differentiation of the function $f\left( x \right)=\dfrac{1}{\sqrt{x}}$ we will use the limit definition of the function which is given by $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ . Now we will substitute f(x) and take LCM of the obtained equation to simplify. We further multiply and divide by conjugate of the numerator and simplify the limit by substituting h = 0. Hence we get the differentiation of the required function.
Complete step-by-step solution:
Now limit definition of differentiation of any function f(x) is given as $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
Here we are given the function $f\left( x \right)=\dfrac{1}{\sqrt{x}}$
Hence substituting the function in the definition of limits we get,
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\sqrt{x+h}}-\dfrac{1}{\sqrt{x}}}{h}$
Taking h in numerator we get,
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h\sqrt{x+h}}-\dfrac{1}{h\sqrt{x}}$
Now taking LCM and making denominators common we get,
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{h\sqrt{x}}{h\sqrt{x+h}}\dfrac{1}{h\sqrt{x}}-\dfrac{h\sqrt{x+h}}{h\sqrt{x}}\dfrac{1}{h\sqrt{x+h}}$
Now we know that $\dfrac{a}{b}-\dfrac{c}{b}=\dfrac{a-c}{b}$ Hence using this we get,
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{h\sqrt{x}-h\sqrt{x+h}}{{{h}^{2}}\sqrt{x}\sqrt{x+h}}$
Now take h common from the numerator and cancel it with the h in the denominator. Hence, we get
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}}$
Now multiplying the numerator and denominator of the above equation by conjugate of numerator which is $\sqrt{x}+\sqrt{x+h}$ we get,
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}}\times \dfrac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}}$
Now we know that $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)$ . Hence using this we get,
\[\begin{align}
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{x-x-h.}{h\left( \sqrt{x}+\sqrt{x+h} \right)\sqrt{x\left( x+h \right)}} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{\left( \sqrt{x}+\sqrt{x+h} \right)\sqrt{x\left( x+h \right)}} \\
\end{align}\]
Now substituting the limits we get,
\[\begin{align}
& \Rightarrow f'\left( x \right)=\dfrac{-1}{\left( \sqrt{x}+\sqrt{x} \right)\sqrt{x\left( x \right)}} \\
& \Rightarrow f'\left( x \right)= -\dfrac{1}{2x\sqrt{x}}= -\dfrac{1}{2{{x}^{\dfrac{3}{2}}}} \\
\end{align}\]
Hence we get the derivative of the function $\dfrac{1}{\sqrt{x}}$ is $-\dfrac{1}{2{{x}^{\dfrac{3}{2}}}}$ .
Note: To understand the limits definition of a function we can imagine a graph of function. The points f(x) and f(x+h) correspond to the value of the function on the y axis corresponding to points x and x+h. Hence if we check the slope of the function it will be given by $\dfrac{f\left( x+h \right)-f\left( x \right)}{x+h-x}=\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ . Now if h is very small the points are very close to each other and hence the function can be approximated as a straight line. Therefore we take $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ as differentiation of the function.
Complete step-by-step solution:
Now limit definition of differentiation of any function f(x) is given as $f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$
Here we are given the function $f\left( x \right)=\dfrac{1}{\sqrt{x}}$
Hence substituting the function in the definition of limits we get,
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{1}{\sqrt{x+h}}-\dfrac{1}{\sqrt{x}}}{h}$
Taking h in numerator we get,
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h\sqrt{x+h}}-\dfrac{1}{h\sqrt{x}}$
Now taking LCM and making denominators common we get,
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{h\sqrt{x}}{h\sqrt{x+h}}\dfrac{1}{h\sqrt{x}}-\dfrac{h\sqrt{x+h}}{h\sqrt{x}}\dfrac{1}{h\sqrt{x+h}}$
Now we know that $\dfrac{a}{b}-\dfrac{c}{b}=\dfrac{a-c}{b}$ Hence using this we get,
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{h\sqrt{x}-h\sqrt{x+h}}{{{h}^{2}}\sqrt{x}\sqrt{x+h}}$
Now take h common from the numerator and cancel it with the h in the denominator. Hence, we get
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}}$
Now multiplying the numerator and denominator of the above equation by conjugate of numerator which is $\sqrt{x}+\sqrt{x+h}$ we get,
$\Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{x}-\sqrt{x+h}}{h\sqrt{x}\sqrt{x+h}}\times \dfrac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}}$
Now we know that $\left( {{a}^{2}}-{{b}^{2}} \right)=\left( a-b \right)\left( a+b \right)$ . Hence using this we get,
\[\begin{align}
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{x-x-h.}{h\left( \sqrt{x}+\sqrt{x+h} \right)\sqrt{x\left( x+h \right)}} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{-1}{\left( \sqrt{x}+\sqrt{x+h} \right)\sqrt{x\left( x+h \right)}} \\
\end{align}\]
Now substituting the limits we get,
\[\begin{align}
& \Rightarrow f'\left( x \right)=\dfrac{-1}{\left( \sqrt{x}+\sqrt{x} \right)\sqrt{x\left( x \right)}} \\
& \Rightarrow f'\left( x \right)= -\dfrac{1}{2x\sqrt{x}}= -\dfrac{1}{2{{x}^{\dfrac{3}{2}}}} \\
\end{align}\]
Hence we get the derivative of the function $\dfrac{1}{\sqrt{x}}$ is $-\dfrac{1}{2{{x}^{\dfrac{3}{2}}}}$ .
Note: To understand the limits definition of a function we can imagine a graph of function. The points f(x) and f(x+h) correspond to the value of the function on the y axis corresponding to points x and x+h. Hence if we check the slope of the function it will be given by $\dfrac{f\left( x+h \right)-f\left( x \right)}{x+h-x}=\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ . Now if h is very small the points are very close to each other and hence the function can be approximated as a straight line. Therefore we take $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ as differentiation of the function.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

