
Using the integral test, how do you show whether \[\sum {\dfrac{1}{{n{{(\log n)}^p}}}} \] diverges or converges from n=3 to infinity?
Answer
529.2k+ views
Hint: In this question, we have to show whether the given series converges or diverges by using the integral test. According to integral test, if ${a_n} = f(n)$ , $f(x)$ is a non-negative non-increasing function, then the condition for $\sum\limits_n^\infty {{a_n}} $ to converge is that the integral $\int\limits_1^\infty {f(x)} dx$ is finite and the condition for it to diverge is that the integral is infinite. So, we can easily solve this question by using the above information.
Complete step-by-step answer:
We have to integral test to show whether \[\sum {\dfrac{1}{{n{{(\log n)}^p}}}} \] converges or diverges from n=3 to infinity.
Let p be a natural number, that is $p \geqslant 1$
For p=1,
$\int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}} dn = \int\limits_3^\infty {\dfrac{1}{{n\log n}}} dn$
Let
$
\log n = u \\
\Rightarrow \dfrac{{d\log n}}{{dn}} = \dfrac{{du}}{{dn}} \\
\Rightarrow \dfrac{1}{n}dn = du \;
$
So, we get –
$
\int\limits_3^\infty {\dfrac{1}{{\log n}} \times \dfrac{1}{n}} dn = \int\limits_{n = 3}^{n = \infty } {\dfrac{1}{u}du} \\
\Rightarrow \int\limits_3^\infty {\dfrac{1}{{n\log n}}dn} = [\log u]_{n = 3}^{n = \infty } \\
\Rightarrow \int\limits_3^\infty {\dfrac{1}{{n\log n}}dn} = [\log (\log n)]_{n = 3}^{n = \infty } \\
\Rightarrow \int\limits_3^\infty {\dfrac{1}{{n\log n}}dn} = \log (\log \infty ) - \log (\log 3) \;
$
We know that $\log \infty = \infty $ so $\log (\log \infty ) = \infty $
$ \Rightarrow \int\limits_3^\infty {\dfrac{1}{{n\log n}}dn} = \infty $
The integral for p=1 is infinite and thus diverges.
At p>1
$\int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} $
Let –
$
\log n = u \\
\Rightarrow du = \dfrac{1}{n}dn \;
$
\[
\Rightarrow \int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} = \int\limits_{n = 3}^\infty {\dfrac{1}{{{u^p}}}du} \\
\Rightarrow \int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} = [\dfrac{{{u^{ - p + 1}}}}{{ - p + 1}}]_{n = 3}^\infty \\
\Rightarrow \int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} = [\dfrac{1}{{(1 - p){{(\log n)}^{p - 1}}}}]_{n = 3}^\infty \\
\Rightarrow \int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} = \dfrac{1}{{(1 - p){{(\log \infty )}^{p - 1}}}} - \dfrac{1}{{(1 - p){{(\log 3)}^{p - 1}}}} \;
\]
We know that $\log \infty = 0$ so we get $\dfrac{1}{{(1 - p){{(\log \infty )}^{p - 1}}}} = 0$ .
$ \Rightarrow \int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} = 0 - \dfrac{1}{{(1 - p){{(\log 3)}^{p - 1}}}}$
Clearly, $\dfrac{1}{{(1 - p){{(\log 3)}^{p - 1}}}}$ is a finite quantity, so the integral is finite for p>1 and thus converges.
Hence, \[\sum {\dfrac{1}{{n{{(\log n)}^p}}}} \] diverges for p=1 and converges for p>1.
Note: A series is defined as an expression in which infinitely many terms are added one after the other to a given starting quantity. When we get further and further in a sequence, the terms get closer and closer to a specific limit, that is, when adding the terms one after the other, if we get partial sums that become closer and closer to a given number, then the series converges and it is known as the convergence of the series, otherwise it is a divergent series.
Complete step-by-step answer:
We have to integral test to show whether \[\sum {\dfrac{1}{{n{{(\log n)}^p}}}} \] converges or diverges from n=3 to infinity.
Let p be a natural number, that is $p \geqslant 1$
For p=1,
$\int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}} dn = \int\limits_3^\infty {\dfrac{1}{{n\log n}}} dn$
Let
$
\log n = u \\
\Rightarrow \dfrac{{d\log n}}{{dn}} = \dfrac{{du}}{{dn}} \\
\Rightarrow \dfrac{1}{n}dn = du \;
$
So, we get –
$
\int\limits_3^\infty {\dfrac{1}{{\log n}} \times \dfrac{1}{n}} dn = \int\limits_{n = 3}^{n = \infty } {\dfrac{1}{u}du} \\
\Rightarrow \int\limits_3^\infty {\dfrac{1}{{n\log n}}dn} = [\log u]_{n = 3}^{n = \infty } \\
\Rightarrow \int\limits_3^\infty {\dfrac{1}{{n\log n}}dn} = [\log (\log n)]_{n = 3}^{n = \infty } \\
\Rightarrow \int\limits_3^\infty {\dfrac{1}{{n\log n}}dn} = \log (\log \infty ) - \log (\log 3) \;
$
We know that $\log \infty = \infty $ so $\log (\log \infty ) = \infty $
$ \Rightarrow \int\limits_3^\infty {\dfrac{1}{{n\log n}}dn} = \infty $
The integral for p=1 is infinite and thus diverges.
At p>1
$\int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} $
Let –
$
\log n = u \\
\Rightarrow du = \dfrac{1}{n}dn \;
$
\[
\Rightarrow \int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} = \int\limits_{n = 3}^\infty {\dfrac{1}{{{u^p}}}du} \\
\Rightarrow \int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} = [\dfrac{{{u^{ - p + 1}}}}{{ - p + 1}}]_{n = 3}^\infty \\
\Rightarrow \int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} = [\dfrac{1}{{(1 - p){{(\log n)}^{p - 1}}}}]_{n = 3}^\infty \\
\Rightarrow \int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} = \dfrac{1}{{(1 - p){{(\log \infty )}^{p - 1}}}} - \dfrac{1}{{(1 - p){{(\log 3)}^{p - 1}}}} \;
\]
We know that $\log \infty = 0$ so we get $\dfrac{1}{{(1 - p){{(\log \infty )}^{p - 1}}}} = 0$ .
$ \Rightarrow \int\limits_3^\infty {\dfrac{1}{{n{{(\log n)}^p}}}dn} = 0 - \dfrac{1}{{(1 - p){{(\log 3)}^{p - 1}}}}$
Clearly, $\dfrac{1}{{(1 - p){{(\log 3)}^{p - 1}}}}$ is a finite quantity, so the integral is finite for p>1 and thus converges.
Hence, \[\sum {\dfrac{1}{{n{{(\log n)}^p}}}} \] diverges for p=1 and converges for p>1.
Note: A series is defined as an expression in which infinitely many terms are added one after the other to a given starting quantity. When we get further and further in a sequence, the terms get closer and closer to a specific limit, that is, when adding the terms one after the other, if we get partial sums that become closer and closer to a given number, then the series converges and it is known as the convergence of the series, otherwise it is a divergent series.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

