
Using properties of determinants, prove that
$ \left| {\begin{array}{*{20}{c}}
{{{\left( {x + y} \right)}^2}}&{zx}&{zy} \\
{zx}&{{{\left( {z + y} \right)}^2}}&{xy} \\
{zy}&{xy}&{{{\left( {z + x} \right)}^2}}
\end{array}} \right| = 2xyz{\left( {x + y + z} \right)^3} $
Answer
577.8k+ views
Hint: In this particular question use the concept of multiplication a single variable into matrix for example in this question multiply z, x, and y in first second and third row respectively and multiply by (1/xyz) outside the determinant so that overall no change, then take z, x, and y common from first, second and third column respectively so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given identity
$ \left| {\begin{array}{*{20}{c}}
{{{\left( {x + y} \right)}^2}}&{zx}&{zy} \\
{zx}&{{{\left( {z + y} \right)}^2}}&{xy} \\
{zy}&{xy}&{{{\left( {z + x} \right)}^2}}
\end{array}} \right| = 2xyz{\left( {x + y + z} \right)^3} $
Consider the LHS of the given identity we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{{{\left( {x + y} \right)}^2}}&{zx}&{zy} \\
{zx}&{{{\left( {z + y} \right)}^2}}&{xy} \\
{zy}&{xy}&{{{\left( {z + x} \right)}^2}}
\end{array}} \right| $
Now multiply z, x, and y in first second and third row respectively and multiply by (1/xyz) outside the determinant so that overall no change, so we have,
$ \Rightarrow \dfrac{1}{{zxy}}\left| {\begin{array}{*{20}{c}}
{z{{\left( {x + y} \right)}^2}}&{{z^2}x}&{{z^2}y} \\
{z{x^2}}&{x{{\left( {z + y} \right)}^2}}&{{x^2}y} \\
{z{y^2}}&{x{y^2}}&{y{{\left( {z + x} \right)}^2}}
\end{array}} \right| $
Now take z, x, and y common from first, second and third column respectively we have,
$ \Rightarrow \dfrac{{zxy}}{{zxy}}\left| {\begin{array}{*{20}{c}}
{{{\left( {x + y} \right)}^2}}&{{z^2}}&{{z^2}} \\
{{x^2}}&{{{\left( {z + y} \right)}^2}}&{{x^2}} \\
{{y^2}}&{{y^2}}&{{{\left( {z + x} \right)}^2}}
\end{array}} \right| $
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{{{\left( {x + y} \right)}^2}}&{{z^2}}&{{z^2}} \\
{{x^2}}&{{{\left( {z + y} \right)}^2}}&{{x^2}} \\
{{y^2}}&{{y^2}}&{{{\left( {z + x} \right)}^2}}
\end{array}} \right| $
Now apply determinant properties i.e. apply $ {C_1} \to {C_1} - {C_3},{C_2} \to {C_2} - {C_3} $ we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{{{\left( {x + y} \right)}^2} - {z^2}}&0&{{z^2}} \\
0&{{{\left( {z + y} \right)}^2} - {x^2}}&{{x^2}} \\
{{y^2} - {{\left( {z + x} \right)}^2}}&{{y^2} - {{\left( {z + x} \right)}^2}}&{{{\left( {z + x} \right)}^2}}
\end{array}} \right| $
Now as we know that $ \left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) $ so use this property in the above determinant we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{\left( {x + y + z} \right)\left( {x + y - z} \right)}&0&{{z^2}} \\
0&{\left( {x + y + z} \right)\left( {z + y - x} \right)}&{{x^2}} \\
{\left( {x + y + z} \right)\left( {y - z - x} \right)}&{\left( {x + y + z} \right)\left( {y - z - x} \right)}&{{{\left( {z + x} \right)}^2}}
\end{array}} \right| $
Now take (x + y + z) common from first and second column respectively we have,
$ \Rightarrow {\left( {x + y + z} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {x + y - z} \right)}&0&{{z^2}} \\
0&{\left( {z + y - x} \right)}&{{x^2}} \\
{\left( {y - z - x} \right)}&{\left( {y - z - x} \right)}&{{{\left( {z + x} \right)}^2}}
\end{array}} \right| $
Now apply, $ {R_3} \to {R_3} - \left( {{R_1} + {R_2}} \right) $ we have,
$ \Rightarrow {\left( {x + y + z} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {x + y - z} \right)}&0&{{z^2}} \\
0&{\left( {z + y - x} \right)}&{{x^2}} \\
{\left( {y - z - x} \right) - \left( {x + y - z} \right)}&{\left( {y - z - x} \right) - \left( {z + y - x} \right)}&{{{\left( {z + x} \right)}^2} - {z^2} - {x^2}}
\end{array}} \right| $
Now simplify the determinant we have,
$ \Rightarrow {\left( {x + y + z} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {x + y - z} \right)}&0&{{z^2}} \\
0&{\left( {z + y - x} \right)}&{{x^2}} \\
{ - 2x}&{ - 2z}&{2zx}
\end{array}} \right| $ , $ \left[ {\because {{\left( {z + x} \right)}^2} = {z^2} + {x^2} + 2zx} \right] $
Now apply, $ {C_1} \to {C_1} + \dfrac{{{C_3}}}{z},{C_2} \to {C_2} + \dfrac{{{C_3}}}{x} $ we have,
$ \Rightarrow {\left( {x + y + z} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {x + y - z} \right) + z}&{\dfrac{{{z^2}}}{x}}&{{z^2}} \\
{\dfrac{{{x^2}}}{z}}&{\left( {z + y - x} \right) + x}&{{x^2}} \\
{ - 2x + 2x}&{ - 2z + 2z}&{2zx}
\end{array}} \right| $
$ \Rightarrow {\left( {x + y + z} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {x + y} \right)}&{\dfrac{{{z^2}}}{x}}&{{z^2}} \\
{\dfrac{{{x^2}}}{z}}&{\left( {z + y} \right)}&{{x^2}} \\
0&0&{2zx}
\end{array}} \right| $
Now expand the determinant w.r.t third row we have,
$ \Rightarrow {\left( {x + y + z} \right)^2}\left[ {2zx\left| {\begin{array}{*{20}{c}}
{x + y}&{\dfrac{{{z^2}}}{x}} \\
{\dfrac{{{x^2}}}{z}}&{z + y}
\end{array}} \right| - 0 + 0} \right] $
Now expand the mini determinant we have,
$ \Rightarrow {\left( {x + y + z} \right)^2}\left[ {2zx\left( {\left( {x + y} \right)\left( {z + y} \right) - \dfrac{{{z^2}}}{x}.\dfrac{{{x^2}}}{z}} \right)} \right] $
Now simplify we have,
$ \Rightarrow {\left( {x + y + z} \right)^2}\left[ {2zx\left( {xz + xy + yz + {y^2} - xz} \right)} \right] $
$ \Rightarrow {\left( {x + y + z} \right)^2}\left[ {2zx\left( {xy + yz + {y^2}} \right)} \right] $
$ \Rightarrow {\left( {x + y + z} \right)^2}\left[ {2zxy\left( {x + z + y} \right)} \right] $
$ \Rightarrow 2xyz{\left( {x + y + z} \right)^3} $
= RHS
Hence proved.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall how to apply the determinant rule (i.e. if we apply determinant in any particular column, the variables of this column is changed according to the variables in the other column we cannot change the variables of any particular column according to the variables of the row).
Complete step-by-step answer:
Given identity
$ \left| {\begin{array}{*{20}{c}}
{{{\left( {x + y} \right)}^2}}&{zx}&{zy} \\
{zx}&{{{\left( {z + y} \right)}^2}}&{xy} \\
{zy}&{xy}&{{{\left( {z + x} \right)}^2}}
\end{array}} \right| = 2xyz{\left( {x + y + z} \right)^3} $
Consider the LHS of the given identity we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{{{\left( {x + y} \right)}^2}}&{zx}&{zy} \\
{zx}&{{{\left( {z + y} \right)}^2}}&{xy} \\
{zy}&{xy}&{{{\left( {z + x} \right)}^2}}
\end{array}} \right| $
Now multiply z, x, and y in first second and third row respectively and multiply by (1/xyz) outside the determinant so that overall no change, so we have,
$ \Rightarrow \dfrac{1}{{zxy}}\left| {\begin{array}{*{20}{c}}
{z{{\left( {x + y} \right)}^2}}&{{z^2}x}&{{z^2}y} \\
{z{x^2}}&{x{{\left( {z + y} \right)}^2}}&{{x^2}y} \\
{z{y^2}}&{x{y^2}}&{y{{\left( {z + x} \right)}^2}}
\end{array}} \right| $
Now take z, x, and y common from first, second and third column respectively we have,
$ \Rightarrow \dfrac{{zxy}}{{zxy}}\left| {\begin{array}{*{20}{c}}
{{{\left( {x + y} \right)}^2}}&{{z^2}}&{{z^2}} \\
{{x^2}}&{{{\left( {z + y} \right)}^2}}&{{x^2}} \\
{{y^2}}&{{y^2}}&{{{\left( {z + x} \right)}^2}}
\end{array}} \right| $
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{{{\left( {x + y} \right)}^2}}&{{z^2}}&{{z^2}} \\
{{x^2}}&{{{\left( {z + y} \right)}^2}}&{{x^2}} \\
{{y^2}}&{{y^2}}&{{{\left( {z + x} \right)}^2}}
\end{array}} \right| $
Now apply determinant properties i.e. apply $ {C_1} \to {C_1} - {C_3},{C_2} \to {C_2} - {C_3} $ we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{{{\left( {x + y} \right)}^2} - {z^2}}&0&{{z^2}} \\
0&{{{\left( {z + y} \right)}^2} - {x^2}}&{{x^2}} \\
{{y^2} - {{\left( {z + x} \right)}^2}}&{{y^2} - {{\left( {z + x} \right)}^2}}&{{{\left( {z + x} \right)}^2}}
\end{array}} \right| $
Now as we know that $ \left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) $ so use this property in the above determinant we have,
$ \Rightarrow \left| {\begin{array}{*{20}{c}}
{\left( {x + y + z} \right)\left( {x + y - z} \right)}&0&{{z^2}} \\
0&{\left( {x + y + z} \right)\left( {z + y - x} \right)}&{{x^2}} \\
{\left( {x + y + z} \right)\left( {y - z - x} \right)}&{\left( {x + y + z} \right)\left( {y - z - x} \right)}&{{{\left( {z + x} \right)}^2}}
\end{array}} \right| $
Now take (x + y + z) common from first and second column respectively we have,
$ \Rightarrow {\left( {x + y + z} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {x + y - z} \right)}&0&{{z^2}} \\
0&{\left( {z + y - x} \right)}&{{x^2}} \\
{\left( {y - z - x} \right)}&{\left( {y - z - x} \right)}&{{{\left( {z + x} \right)}^2}}
\end{array}} \right| $
Now apply, $ {R_3} \to {R_3} - \left( {{R_1} + {R_2}} \right) $ we have,
$ \Rightarrow {\left( {x + y + z} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {x + y - z} \right)}&0&{{z^2}} \\
0&{\left( {z + y - x} \right)}&{{x^2}} \\
{\left( {y - z - x} \right) - \left( {x + y - z} \right)}&{\left( {y - z - x} \right) - \left( {z + y - x} \right)}&{{{\left( {z + x} \right)}^2} - {z^2} - {x^2}}
\end{array}} \right| $
Now simplify the determinant we have,
$ \Rightarrow {\left( {x + y + z} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {x + y - z} \right)}&0&{{z^2}} \\
0&{\left( {z + y - x} \right)}&{{x^2}} \\
{ - 2x}&{ - 2z}&{2zx}
\end{array}} \right| $ , $ \left[ {\because {{\left( {z + x} \right)}^2} = {z^2} + {x^2} + 2zx} \right] $
Now apply, $ {C_1} \to {C_1} + \dfrac{{{C_3}}}{z},{C_2} \to {C_2} + \dfrac{{{C_3}}}{x} $ we have,
$ \Rightarrow {\left( {x + y + z} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {x + y - z} \right) + z}&{\dfrac{{{z^2}}}{x}}&{{z^2}} \\
{\dfrac{{{x^2}}}{z}}&{\left( {z + y - x} \right) + x}&{{x^2}} \\
{ - 2x + 2x}&{ - 2z + 2z}&{2zx}
\end{array}} \right| $
$ \Rightarrow {\left( {x + y + z} \right)^2}\left| {\begin{array}{*{20}{c}}
{\left( {x + y} \right)}&{\dfrac{{{z^2}}}{x}}&{{z^2}} \\
{\dfrac{{{x^2}}}{z}}&{\left( {z + y} \right)}&{{x^2}} \\
0&0&{2zx}
\end{array}} \right| $
Now expand the determinant w.r.t third row we have,
$ \Rightarrow {\left( {x + y + z} \right)^2}\left[ {2zx\left| {\begin{array}{*{20}{c}}
{x + y}&{\dfrac{{{z^2}}}{x}} \\
{\dfrac{{{x^2}}}{z}}&{z + y}
\end{array}} \right| - 0 + 0} \right] $
Now expand the mini determinant we have,
$ \Rightarrow {\left( {x + y + z} \right)^2}\left[ {2zx\left( {\left( {x + y} \right)\left( {z + y} \right) - \dfrac{{{z^2}}}{x}.\dfrac{{{x^2}}}{z}} \right)} \right] $
Now simplify we have,
$ \Rightarrow {\left( {x + y + z} \right)^2}\left[ {2zx\left( {xz + xy + yz + {y^2} - xz} \right)} \right] $
$ \Rightarrow {\left( {x + y + z} \right)^2}\left[ {2zx\left( {xy + yz + {y^2}} \right)} \right] $
$ \Rightarrow {\left( {x + y + z} \right)^2}\left[ {2zxy\left( {x + z + y} \right)} \right] $
$ \Rightarrow 2xyz{\left( {x + y + z} \right)^3} $
= RHS
Hence proved.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall how to apply the determinant rule (i.e. if we apply determinant in any particular column, the variables of this column is changed according to the variables in the other column we cannot change the variables of any particular column according to the variables of the row).
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

