
Using properties of determinants, prove that:
$\left| \begin{matrix}
{{a}^{2}}+2a & 2a+1 & 1 \\
2a+1 & a+2 & 1 \\
3 & 3 & 1 \\
\end{matrix} \right|={{\left( a-1 \right)}^{3}}$
Answer
608.4k+ views
Hint: For solving this question we will perform elementary row operations in the given square matrix to get the determinant value of the matrix to prove the result.
Complete step-by-step answer:
Given:
We have a square matrix $\left[ \begin{matrix}
{{a}^{2}}+2a & 2a+1 & 1 \\
2a+1 & a+2 & 1 \\
3 & 3 & 1 \\
\end{matrix} \right]$ .
We will use the following formula of determinant to find the determinant value:
$\begin{align}
& \left| A \right|=\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right| \\
& \Rightarrow \left| A \right|={{a}_{11}}\left( {{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}} \right)+{{a}_{12}}\left( {{a}_{23}}{{a}_{31}}-{{a}_{21}}{{a}_{33}} \right)+{{a}_{13}}\left( {{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}} \right) \\
\end{align}$
Now, first, we will perform the elementary row operations on the given matrix to reduce it into a form in which we will have two zero elements in the same column or same row.
Elementary row operations:
1. The given matrix is $\left[ \begin{matrix}
{{a}^{2}}+2a & 2a+1 & 1 \\
2a+1 & a+2 & 1 \\
3 & 3 & 1 \\
\end{matrix} \right]$ .
2. Now, subtract the second row from the first row then, the matrix will become, $\left[ \begin{matrix}
{{a}^{2}}-1 & a-1 & 0 \\
2a+1 & a+2 & 1 \\
3 & 3 & 1 \\
\end{matrix} \right]$ .
3. Now, subtract the third row from the second row then, the matrix will become, $\begin{align}
& \left[ \begin{matrix}
{{a}^{2}}-1 & a-1 & 0 \\
2a-2 & a-1 & 0 \\
3 & 3 & 1 \\
\end{matrix} \right] \\
& \Rightarrow \left[ \begin{matrix}
\left( a-1 \right)\left( a+1 \right) & a-1 & 0 \\
2\left( a-1 \right) & a-1 & 0 \\
3 & 3 & 1 \\
\end{matrix} \right] \\
\end{align}$
4. Now, subtract the second row from the first row then, the matrix will become,
$\begin{align}
& \left[ \begin{matrix}
\left( a-1 \right)\left( a+1 \right)-2\left( a-1 \right) & \left( a-1 \right)-\left( a-1 \right) & 0 \\
2\left( a-1 \right) & a-1 & 0 \\
3 & 3 & 1 \\
\end{matrix} \right] \\
& \Rightarrow \left[ \begin{matrix}
\left( a-1 \right)\left( a+1-2 \right) & 0 & 0 \\
2\left( a-1 \right) & a-1 & 0 \\
3 & 3 & 1 \\
\end{matrix} \right] \\
& \Rightarrow \left[ \begin{matrix}
\left( a-1 \right)\left( a-1 \right) & 0 & 0 \\
2\left( a-1 \right) & a-1 & 0 \\
3 & 3 & 1 \\
\end{matrix} \right] \\
\end{align}$
Now, we got a matrix $\left[ \begin{matrix}
\left( a-1 \right)\left( a-1 \right) & 0 & 0 \\
2\left( a-1 \right) & a-1 & 0 \\
3 & 3 & 1 \\
\end{matrix} \right]$ . As we know that when we perform either elementary row operations or elementary column operation the determinant value of the matrix won’t change. So, we will now calculate the determinant value of $\left[ \begin{matrix}
\left( a-1 \right)\left( a-1 \right) & 0 & 0 \\
2\left( a-1 \right) & a-1 & 0 \\
3 & 3 & 1 \\
\end{matrix} \right]$ . Then,
$\begin{align}
& \left| \left[ \begin{matrix}
\left( a-1 \right)\left( a-1 \right) & 0 & 0 \\
2\left( a-1 \right) & a-1 & 0 \\
3 & 3 & 1 \\
\end{matrix} \right] \right| \\
& \Rightarrow 1\times \left[ \left( a-1 \right)\left( a-1 \right)\times \left( a-1 \right) \right] \\
& \Rightarrow {{\left( a-1 \right)}^{3}} \\
\end{align}$
Thus, from the above calculation of the determinant value of the matrix, we can say that the determinant value of the given matrix is ${{\left( a-1 \right)}^{3}}$ .
$\left| \begin{matrix}
{{a}^{2}}+2a & 2a+1 & 1 \\
2a+1 & a+2 & 1 \\
3 & 3 & 1 \\
\end{matrix} \right|={{\left( a-1 \right)}^{3}}$
Hence, proved.
Note: Here, the student should not directly apply the determinant formulae for the $3\times 3$ square matrix to prove the result before applying the elementary row operations. That would be a very wrong approach as it is mentioned in the question that we have to use the properties of determinants to prove the result.
Complete step-by-step answer:
Given:
We have a square matrix $\left[ \begin{matrix}
{{a}^{2}}+2a & 2a+1 & 1 \\
2a+1 & a+2 & 1 \\
3 & 3 & 1 \\
\end{matrix} \right]$ .
We will use the following formula of determinant to find the determinant value:
$\begin{align}
& \left| A \right|=\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right| \\
& \Rightarrow \left| A \right|={{a}_{11}}\left( {{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}} \right)+{{a}_{12}}\left( {{a}_{23}}{{a}_{31}}-{{a}_{21}}{{a}_{33}} \right)+{{a}_{13}}\left( {{a}_{21}}{{a}_{32}}-{{a}_{22}}{{a}_{31}} \right) \\
\end{align}$
Now, first, we will perform the elementary row operations on the given matrix to reduce it into a form in which we will have two zero elements in the same column or same row.
Elementary row operations:
1. The given matrix is $\left[ \begin{matrix}
{{a}^{2}}+2a & 2a+1 & 1 \\
2a+1 & a+2 & 1 \\
3 & 3 & 1 \\
\end{matrix} \right]$ .
2. Now, subtract the second row from the first row then, the matrix will become, $\left[ \begin{matrix}
{{a}^{2}}-1 & a-1 & 0 \\
2a+1 & a+2 & 1 \\
3 & 3 & 1 \\
\end{matrix} \right]$ .
3. Now, subtract the third row from the second row then, the matrix will become, $\begin{align}
& \left[ \begin{matrix}
{{a}^{2}}-1 & a-1 & 0 \\
2a-2 & a-1 & 0 \\
3 & 3 & 1 \\
\end{matrix} \right] \\
& \Rightarrow \left[ \begin{matrix}
\left( a-1 \right)\left( a+1 \right) & a-1 & 0 \\
2\left( a-1 \right) & a-1 & 0 \\
3 & 3 & 1 \\
\end{matrix} \right] \\
\end{align}$
4. Now, subtract the second row from the first row then, the matrix will become,
$\begin{align}
& \left[ \begin{matrix}
\left( a-1 \right)\left( a+1 \right)-2\left( a-1 \right) & \left( a-1 \right)-\left( a-1 \right) & 0 \\
2\left( a-1 \right) & a-1 & 0 \\
3 & 3 & 1 \\
\end{matrix} \right] \\
& \Rightarrow \left[ \begin{matrix}
\left( a-1 \right)\left( a+1-2 \right) & 0 & 0 \\
2\left( a-1 \right) & a-1 & 0 \\
3 & 3 & 1 \\
\end{matrix} \right] \\
& \Rightarrow \left[ \begin{matrix}
\left( a-1 \right)\left( a-1 \right) & 0 & 0 \\
2\left( a-1 \right) & a-1 & 0 \\
3 & 3 & 1 \\
\end{matrix} \right] \\
\end{align}$
Now, we got a matrix $\left[ \begin{matrix}
\left( a-1 \right)\left( a-1 \right) & 0 & 0 \\
2\left( a-1 \right) & a-1 & 0 \\
3 & 3 & 1 \\
\end{matrix} \right]$ . As we know that when we perform either elementary row operations or elementary column operation the determinant value of the matrix won’t change. So, we will now calculate the determinant value of $\left[ \begin{matrix}
\left( a-1 \right)\left( a-1 \right) & 0 & 0 \\
2\left( a-1 \right) & a-1 & 0 \\
3 & 3 & 1 \\
\end{matrix} \right]$ . Then,
$\begin{align}
& \left| \left[ \begin{matrix}
\left( a-1 \right)\left( a-1 \right) & 0 & 0 \\
2\left( a-1 \right) & a-1 & 0 \\
3 & 3 & 1 \\
\end{matrix} \right] \right| \\
& \Rightarrow 1\times \left[ \left( a-1 \right)\left( a-1 \right)\times \left( a-1 \right) \right] \\
& \Rightarrow {{\left( a-1 \right)}^{3}} \\
\end{align}$
Thus, from the above calculation of the determinant value of the matrix, we can say that the determinant value of the given matrix is ${{\left( a-1 \right)}^{3}}$ .
$\left| \begin{matrix}
{{a}^{2}}+2a & 2a+1 & 1 \\
2a+1 & a+2 & 1 \\
3 & 3 & 1 \\
\end{matrix} \right|={{\left( a-1 \right)}^{3}}$
Hence, proved.
Note: Here, the student should not directly apply the determinant formulae for the $3\times 3$ square matrix to prove the result before applying the elementary row operations. That would be a very wrong approach as it is mentioned in the question that we have to use the properties of determinants to prove the result.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

