
Using properties of determinant, prove that: $\left| \begin{matrix}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c \\
\end{matrix} \right|=\text{ }abc\text{ }+\text{ }ab\text{ }+\text{ }ac\text{ }+\text{ }bc$
Answer
509.1k+ views
Hint: To solve this determinant, what we will do is firstly, we will take factor a common from ${{R}_{1}}$ , b common from ${{R}_{2}}$and c common from ${{R}_{3}}$, then we will use row and column elementary transformation to solve the determinant.
Complete step by step answer:
Now, before we start solving the questions, let us see how we calculate determinant -
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$
Some of the properties of determinant are as follows,
( a ) Determinant evaluated across any row or column is the same.
( b ) If all the elements of a row or a column are zeros, then the value of the determinant is equal to zero.
( c ) If rows and columns are interchanged then the value of the determinant remains the same.
( d ) Determinant of an identity matrix is 1.
Now, let us move to question now, it is asked to prove that $\left| \begin{matrix}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c \\
\end{matrix} \right|=\text{ }abc\text{ }+\text{ }ab\text{ }+\text{ }ac\text{ }+\text{ }bc$
So, this can be proved by solving determinant across any row or column, as the value of the determinant will be the same.
Now, we can write $\left| \begin{matrix}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c \\
\end{matrix} \right|$, as
$\left| \begin{matrix}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c \\
\end{matrix} \right|=abc\left| \begin{matrix}
\dfrac{1}{a}+1 & \dfrac{1}{a} & \dfrac{1}{a} \\
\dfrac{1}{b} & \dfrac{1}{b}+1 & \dfrac{1}{b} \\
\dfrac{1}{c} & \dfrac{1}{c} & \dfrac{1}{c}+1 \\
\end{matrix} \right|$, where we took a common from ${{R}_{1}}$ , b common from ${{R}_{2}}$and c common from ${{R}_{3}}$.
Now, using elementary row operation ${{R}_{1}}\to {{R}_{1}}+{{R}_{2}}+{{R}_{3}}$ , we get
$=abc\left| \begin{matrix}
\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 & \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 & \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \\
\dfrac{1}{b} & \dfrac{1}{b}+1 & \dfrac{1}{b} \\
\dfrac{1}{c} & \dfrac{1}{c} & \dfrac{1}{c}+1 \\
\end{matrix} \right|$
Taking $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1$common from ${{R}_{1}}$, we get
$=abc\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \right)\left| \begin{matrix}
1 & 1 & 1 \\
\dfrac{1}{b} & \dfrac{1}{b}+1 & \dfrac{1}{b} \\
\dfrac{1}{c} & \dfrac{1}{c} & \dfrac{1}{c}+1 \\
\end{matrix} \right|$
Using, ${{C}_{2}}\to {{C}_{2}}-{{C}_{1}}$ and ${{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$, we get
$=abc\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \right)\left| \begin{matrix}
1 & 0 & 0 \\
\dfrac{1}{b} & 1 & 0 \\
\dfrac{1}{c} & 0 & 1 \\
\end{matrix} \right|$
Expanding determinant along ${{R}_{1}}$, we get
$=abc\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \right)\left[ 1(1-0)-0\left( \dfrac{1}{b}-0\cdot \dfrac{1}{c} \right)+0\left( 0\cdot \dfrac{1}{b}-1\cdot \dfrac{1}{c} \right) \right]$
On simplifying, we get
$=abc\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \right)\left[ 1-0+0 \right]$
$=abc\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \right)$
On solving, we get
$=abc\text{ }+\text{ }ab\text{ }+\text{ }ac\text{ }+\text{ }bc$
Hence, determinant $\left| \begin{matrix}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c \\
\end{matrix} \right|=\text{ }abc\text{ }+\text{ }ab\text{ }+\text{ }ac\text{ }+\text{ }bc$
Note: It is very important to know how to solve determinant using it’s properties so knowledge of properties of determinant should be a priority. In determinant we can use both column and row elementary transformation. Calculation should be done carefully while solving determinant problems.
Complete step by step answer:
Now, before we start solving the questions, let us see how we calculate determinant -
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}({{a}_{22}}{{a}_{33}}-{{a}_{32}}{{a}_{23}})-{{a}_{21}}({{a}_{12}}{{a}_{33}}-{{a}_{32}}{{a}_{13}})+{{a}_{31}}({{a}_{23}}{{a}_{12}}-{{a}_{22}}{{a}_{13}})$
Some of the properties of determinant are as follows,
( a ) Determinant evaluated across any row or column is the same.
( b ) If all the elements of a row or a column are zeros, then the value of the determinant is equal to zero.
( c ) If rows and columns are interchanged then the value of the determinant remains the same.
( d ) Determinant of an identity matrix is 1.
Now, let us move to question now, it is asked to prove that $\left| \begin{matrix}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c \\
\end{matrix} \right|=\text{ }abc\text{ }+\text{ }ab\text{ }+\text{ }ac\text{ }+\text{ }bc$
So, this can be proved by solving determinant across any row or column, as the value of the determinant will be the same.
Now, we can write $\left| \begin{matrix}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c \\
\end{matrix} \right|$, as
$\left| \begin{matrix}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c \\
\end{matrix} \right|=abc\left| \begin{matrix}
\dfrac{1}{a}+1 & \dfrac{1}{a} & \dfrac{1}{a} \\
\dfrac{1}{b} & \dfrac{1}{b}+1 & \dfrac{1}{b} \\
\dfrac{1}{c} & \dfrac{1}{c} & \dfrac{1}{c}+1 \\
\end{matrix} \right|$, where we took a common from ${{R}_{1}}$ , b common from ${{R}_{2}}$and c common from ${{R}_{3}}$.
Now, using elementary row operation ${{R}_{1}}\to {{R}_{1}}+{{R}_{2}}+{{R}_{3}}$ , we get
$=abc\left| \begin{matrix}
\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 & \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 & \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \\
\dfrac{1}{b} & \dfrac{1}{b}+1 & \dfrac{1}{b} \\
\dfrac{1}{c} & \dfrac{1}{c} & \dfrac{1}{c}+1 \\
\end{matrix} \right|$
Taking $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1$common from ${{R}_{1}}$, we get
$=abc\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \right)\left| \begin{matrix}
1 & 1 & 1 \\
\dfrac{1}{b} & \dfrac{1}{b}+1 & \dfrac{1}{b} \\
\dfrac{1}{c} & \dfrac{1}{c} & \dfrac{1}{c}+1 \\
\end{matrix} \right|$
Using, ${{C}_{2}}\to {{C}_{2}}-{{C}_{1}}$ and ${{C}_{3}}\to {{C}_{3}}-{{C}_{1}}$, we get
$=abc\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \right)\left| \begin{matrix}
1 & 0 & 0 \\
\dfrac{1}{b} & 1 & 0 \\
\dfrac{1}{c} & 0 & 1 \\
\end{matrix} \right|$
Expanding determinant along ${{R}_{1}}$, we get
$=abc\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \right)\left[ 1(1-0)-0\left( \dfrac{1}{b}-0\cdot \dfrac{1}{c} \right)+0\left( 0\cdot \dfrac{1}{b}-1\cdot \dfrac{1}{c} \right) \right]$
On simplifying, we get
$=abc\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \right)\left[ 1-0+0 \right]$
$=abc\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+1 \right)$
On solving, we get
$=abc\text{ }+\text{ }ab\text{ }+\text{ }ac\text{ }+\text{ }bc$
Hence, determinant $\left| \begin{matrix}
1+a & 1 & 1 \\
1 & 1+b & 1 \\
1 & 1 & 1+c \\
\end{matrix} \right|=\text{ }abc\text{ }+\text{ }ab\text{ }+\text{ }ac\text{ }+\text{ }bc$
Note: It is very important to know how to solve determinant using it’s properties so knowledge of properties of determinant should be a priority. In determinant we can use both column and row elementary transformation. Calculation should be done carefully while solving determinant problems.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
A deep narrow valley with steep sides formed as a result class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Derive an expression for electric potential at point class 12 physics CBSE
