Answer

Verified

382.8k+ views

**Hint:**

Here, we will first find the factors of all the numbers separately by the method of prime factorization. Then we will list all the factors of the given numbers. Using the concept HCF and LCM we will find the required values. Prime Factorization is a method of finding the factors of the given numbers in terms of prime numbers.

**Complete step by step solution:**

We are given with the numbers 21, 28, 36, 45.

Now, we will find the factors of all the numbers using the method of prime factorization

Now, we will find the factors of 21 using prime factorization.

We can see that 21 is an odd number, so dividing it by the least odd prime number 3, we get

\[21 \div 3 = 7\]

Now as we have obtained our quotient as prime number, we will not factorize it further.

Thus, the factors of 21 are 3 and 7 and can be expressed as:

\[21 = 3 \times 7\]

Now, we are finding the factors of 28 using prime factorization. Therefore, we get

We can see that 28 is an even number, so dividing it by the least prime number 2, we get

\[28 \div 2 = 14\]

Now we will divide 14 by 2. Therefore, we get

\[14 \div 2 = 7\]

Now as we have obtained our quotient as prime number, we will not factorize it further.

Thus, the factors of 28 are 2,2 and 7 and can be expressed as:

\[28 = 2 \times 2 \times 7\]

Now, we will find the factors of 36.

We can see that 36 is an even number, so dividing it by the least prime number 2, we get

\[36 \div 2 = 18\]

Now we will divide 14 by 2. Therefore, we get

\[18 \div 2 = 9\]

Dividing 9 by the next least prime number 3, we get

\[9 \div 3 = 3\]

Now as we have obtained our quotient as prime number, we will not factorize it further.

Thus the factors of 36 are 2,2,3 and 3 and can be expressed as:

\[36 = 2 \times 2 \times 3 \times 3\]

Now, we will find the factors of 45 using prime factorization.

We can see that 45 is an odd number, so dividing it by the least odd prime number 3, we get

\[45 \div 3 = 15\]

Now we will divide 15 by 3. Therefore, we get

\[15 \div 3 = 5\]

Now as we have obtained our quotient as prime number, we will not factorize it further.

Thus the factors of 36 are 3,3 and 5 and can be expressed as:

\[45 = 3 \times 3 \times 5\]

Thus the factors of all the numbers are represented with the same bases as:

\[\begin{array}{l}21 = {2^0} \times {3^1} \times {5^0} \times {7^1}\\28 = {2^2} \times {3^0} \times {5^0} \times {7^1}\\36 = {2^2} \times {3^2} \times {5^0} \times {7^0}\\45 = {2^0} \times {3^2} \times {5^1} \times {7^0}\end{array}\]

Now, we will find the HCF for the given numbers from the factors.

Highest common factor is a factor which is common for all the factors.

Thus, we get

HCF of \[\left( {21,28,36,45} \right) = {2^0} \times {3^0} \times {5^0} \times {7^0}\]

We know that any number raised to the power zero is one. So, we get

\[ \Rightarrow \] HCF of \[\left( {21,28,36,45} \right) = 1\]

Now, we will find the LCM for the given numbers from the factors.

Least Common Multiple is a multiple which is divisible by all the numbers.

Thus, we get

LCM of \[\left( {21,28,36,45} \right) = {2^2} \times {3^2} \times {5^1} \times {7^1}\]

Applying the exponent on the terms, we get

\[ \Rightarrow \] LCM of \[\left( {21,28,36,45} \right) = 4 \times 9 \times 5 \times 7\]

Multiplying the terms, we get

\[ \Rightarrow \] LCM of \[\left( {21,28,36,45} \right) = 1260\]

**Therefore, the HCF of \[\left( {21,28,36,45} \right)\] is 1 and the LCM of \[\left( {21,28,36,45} \right)\] is 1260.**

**Note:**

The Highest Common Factor (H.C.F) of two numbers is defined as the greatest number which divides exactly both the numbers. The Least Common Multiple (L.C.M) of two numbers is defined as the smallest number which is divisible by both the numbers. HCF can be found by multiplying the factors with the least exponent common for all the factors and LCM can be found by multiplying the factors with the highest exponent from all the factors.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Guru Purnima speech in English in 100 words class 7 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Three liquids are given to you One is hydrochloric class 11 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE