Answer

Verified

373.2k+ views

**Hint:**

Here, we will first find the factors of all the numbers separately by the method of prime factorization. Then we will list all the factors of the given numbers. Using the concept HCF and LCM we will find the required values. Prime Factorization is a method of finding the factors of the given numbers in terms of prime numbers.

**Complete step by step solution:**

We are given with the numbers 21, 28, 36, 45.

Now, we will find the factors of all the numbers using the method of prime factorization

Now, we will find the factors of 21 using prime factorization.

We can see that 21 is an odd number, so dividing it by the least odd prime number 3, we get

\[21 \div 3 = 7\]

Now as we have obtained our quotient as prime number, we will not factorize it further.

Thus, the factors of 21 are 3 and 7 and can be expressed as:

\[21 = 3 \times 7\]

Now, we are finding the factors of 28 using prime factorization. Therefore, we get

We can see that 28 is an even number, so dividing it by the least prime number 2, we get

\[28 \div 2 = 14\]

Now we will divide 14 by 2. Therefore, we get

\[14 \div 2 = 7\]

Now as we have obtained our quotient as prime number, we will not factorize it further.

Thus, the factors of 28 are 2,2 and 7 and can be expressed as:

\[28 = 2 \times 2 \times 7\]

Now, we will find the factors of 36.

We can see that 36 is an even number, so dividing it by the least prime number 2, we get

\[36 \div 2 = 18\]

Now we will divide 14 by 2. Therefore, we get

\[18 \div 2 = 9\]

Dividing 9 by the next least prime number 3, we get

\[9 \div 3 = 3\]

Now as we have obtained our quotient as prime number, we will not factorize it further.

Thus the factors of 36 are 2,2,3 and 3 and can be expressed as:

\[36 = 2 \times 2 \times 3 \times 3\]

Now, we will find the factors of 45 using prime factorization.

We can see that 45 is an odd number, so dividing it by the least odd prime number 3, we get

\[45 \div 3 = 15\]

Now we will divide 15 by 3. Therefore, we get

\[15 \div 3 = 5\]

Now as we have obtained our quotient as prime number, we will not factorize it further.

Thus the factors of 36 are 3,3 and 5 and can be expressed as:

\[45 = 3 \times 3 \times 5\]

Thus the factors of all the numbers are represented with the same bases as:

\[\begin{array}{l}21 = {2^0} \times {3^1} \times {5^0} \times {7^1}\\28 = {2^2} \times {3^0} \times {5^0} \times {7^1}\\36 = {2^2} \times {3^2} \times {5^0} \times {7^0}\\45 = {2^0} \times {3^2} \times {5^1} \times {7^0}\end{array}\]

Now, we will find the HCF for the given numbers from the factors.

Highest common factor is a factor which is common for all the factors.

Thus, we get

HCF of \[\left( {21,28,36,45} \right) = {2^0} \times {3^0} \times {5^0} \times {7^0}\]

We know that any number raised to the power zero is one. So, we get

\[ \Rightarrow \] HCF of \[\left( {21,28,36,45} \right) = 1\]

Now, we will find the LCM for the given numbers from the factors.

Least Common Multiple is a multiple which is divisible by all the numbers.

Thus, we get

LCM of \[\left( {21,28,36,45} \right) = {2^2} \times {3^2} \times {5^1} \times {7^1}\]

Applying the exponent on the terms, we get

\[ \Rightarrow \] LCM of \[\left( {21,28,36,45} \right) = 4 \times 9 \times 5 \times 7\]

Multiplying the terms, we get

\[ \Rightarrow \] LCM of \[\left( {21,28,36,45} \right) = 1260\]

**Therefore, the HCF of \[\left( {21,28,36,45} \right)\] is 1 and the LCM of \[\left( {21,28,36,45} \right)\] is 1260.**

**Note:**

The Highest Common Factor (H.C.F) of two numbers is defined as the greatest number which divides exactly both the numbers. The Least Common Multiple (L.C.M) of two numbers is defined as the smallest number which is divisible by both the numbers. HCF can be found by multiplying the factors with the least exponent common for all the factors and LCM can be found by multiplying the factors with the highest exponent from all the factors.

Recently Updated Pages

How do you find slope point slope slope intercept standard class 12 maths CBSE

How do you find B1 We know that B2B+2I3 class 12 maths CBSE

How do you integrate int dfracxsqrt x2 + 9 dx class 12 maths CBSE

How do you integrate int left dfracx2 1x + 1 right class 12 maths CBSE

How do you find the critical points of yx2sin x on class 12 maths CBSE

How do you find the general solution to dfracdydx class 12 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

List some examples of Rabi and Kharif crops class 8 biology CBSE

Which are the Top 10 Largest Countries of the World?

The provincial president of the constituent assembly class 11 social science CBSE

Write the 6 fundamental rights of India and explain in detail