
Using matrices, solve the following system of equations:
$2x+3y+3z=5,x-2y+z=-4,3x-y-2z=3.$
Answer
591.6k+ views
Hint: We first consider the given system of linear equations and we represent them in the matrix form $AX=B$. We have to find the solution that is, matrix $X={{A}^{-1}}B$. Before finding the solution, we make sure that the matrix ${{A}^{-1}}$ exists by checking whether the determinant of matrix $A$ is zero or not. After making sure that the determinant of matrix $A$ is not equal to zero, we find the matrix ${{A}^{-1}}$ using the formula $\dfrac{1}{\left| A \right|}Adj\left( A \right)$. Then we obtain the final result $X$using the formula $X={{A}^{-1}}B$.
Complete step by step answer:
Let us consider the given system of linear equations,
$\begin{align}
& 2x+3y+3z=5 \\
& x-2y+z=-4 \\
& 3x-y-2z=3 \\
\end{align}$
Now, we represent this system of linear equations in matrix form i.e., $AX=B$ where
$A=\left[ \begin{matrix}
2 & 3 & 3 \\
1 & -2 & 1 \\
3 & -1 & -2 \\
\end{matrix} \right]$, $X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
5 \\
-4 \\
3 \\
\end{matrix} \right]$
So, let us check whether the determinant is equal to zero or not equal to zero.
Now, let us consider the formula,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}\left( {{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}} \right)-{{a}_{21}}\left( {{a}_{12}}{{a}_{33}}-{{a}_{13}}{{a}_{32}} \right)+{{a}_{31}}\left( {{a}_{12}}{{a}_{23}}-{{a}_{13}}{{a}_{22}} \right)$
By using the above formula,
$\left| A \right|=\left| \begin{matrix}
2 & 3 & 3 \\
1 & -2 & 1 \\
3 & -1 & -2 \\
\end{matrix} \right|=2\left( 4+1 \right)-1\left( -6+3 \right)+3\left( 3+6 \right)$
$\begin{align}
& \left| A \right|=2\left( 5 \right)-1\left( -3 \right)+3\left( 9 \right) \\
& \left| A \right|=10+3+27 \\
& \left| A \right|=40 \\
\end{align}$
So, we got
$\left| A \right|\ne 0$
So, we can say that ${{A}^{-1}}$ exists.
Let us consider the formula,
${{A}^{-1}}=\dfrac{1}{\left| A \right|}AdjA$
So now, we find the matrix $AdjA$.
To find the adjoint of a matrix, first we find the cofactor matrix of the given matrix. Then we find the transpose of the cofactor matrix.
We have, $A=\left[ \begin{matrix}
2 & 3 & 3 \\
1 & -2 & 1 \\
3 & -1 & -2 \\
\end{matrix} \right]$
For finding the inverse we have to find the cofactor matrix of A. So, first let us find the cofactors of every element in the matrix.
Cofactor of 2 = $\left| \begin{matrix}
-2 & 1 \\
-1 & -2 \\
\end{matrix} \right|=-2\left( -2 \right)-1\left( -1 \right)=5$
Cofactor of 3 = $-\left| \begin{matrix}
1 & 1 \\
3 & -2 \\
\end{matrix} \right|=-\left( 1\left( -2 \right)-1\left( 3 \right) \right)=5$
Cofactor of 3 = $\left| \begin{matrix}
1 & -2 \\
3 & -1 \\
\end{matrix} \right|=1\left( -1 \right)-\left( -2 \right)\left( 3 \right)=5$
Cofactor of 1 = $-\left| \begin{matrix}
3 & 3 \\
-1 & -2 \\
\end{matrix} \right|=-\left( 3\left( -2 \right)-3\left( -1 \right) \right)=3$
Cofactor of -2 = $\left| \begin{matrix}
2 & 3 \\
3 & -2 \\
\end{matrix} \right|=2\left( -2 \right)-3\left( 3 \right)=-13$
Cofactor of 1 = $-\left| \begin{matrix}
2 & 3 \\
3 & -1 \\
\end{matrix} \right|=-\left( 2\left( -1 \right)-3\left( 3 \right) \right)=11$
Cofactor of 3 = $\left| \begin{matrix}
3 & 3 \\
-2 & 1 \\
\end{matrix} \right|=3\left( 1 \right)-3\left( -2 \right)=9$
Cofactor of -1 = $-\left| \begin{matrix}
2 & 3 \\
1 & 1 \\
\end{matrix} \right|=-\left( 2\left( 1 \right)-3\left( 1 \right) \right)=1$
Cofactor of -2 = $\left| \begin{matrix}
2 & 3 \\
1 & -2 \\
\end{matrix} \right|=2\left( -2 \right)-3\left( 1 \right)=-7$
We get the cofactor matrix = $\left[ \begin{matrix}
5 & 5 & 5 \\
3 & -13 & 11 \\
9 & 1 & -7 \\
\end{matrix} \right]$
Now, we get $AdjA$ by taking the transpose of cofactor matrix.
$AdjA=\left[ \begin{matrix}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7 \\
\end{matrix} \right]$
Now, let us consider the formula, ${{A}^{-1}}=\dfrac{1}{\left| A \right|}AdjA$
By using the above formula, we get
$AdjA=\dfrac{1}{40}\left[ \begin{matrix}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7 \\
\end{matrix} \right]$
Let us consider the formula $X={{A}^{-1}}B$
By using the above formula, we get
$\begin{align}
& X=\dfrac{1}{\left| 40 \right|}\left[ \begin{matrix}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7 \\
\end{matrix} \right]\left[ \begin{matrix}
5 \\
-4 \\
3 \\
\end{matrix} \right] \\
& \\
& X=\dfrac{1}{\left| 40 \right|}\left[ \begin{matrix}
5\left( 5 \right)+3\left( -4 \right)+9\left( 3 \right) \\
5\left( 5 \right)-13\left( -4 \right)+1\left( 3 \right) \\
5\left( 5 \right)+11\left( -4 \right)-7\left( 3 \right) \\
\end{matrix} \right] \\
& \\
& X=\dfrac{1}{\left| 40 \right|}\left[ \begin{matrix}
25-12+27 \\
25+52+3 \\
25-44-21 \\
\end{matrix} \right] \\
& \\
& X=\dfrac{1}{\left| 40 \right|}\left[ \begin{matrix}
40 \\
80 \\
-40 \\
\end{matrix} \right] \\
& \\
& X=\left[ \begin{matrix}
\dfrac{40}{40} \\
\dfrac{80}{40} \\
\dfrac{-40}{40} \\
\end{matrix} \right] \\
& \\
& X=\left[ \begin{matrix}
1 \\
2 \\
-1 \\
\end{matrix} \right] \\
\end{align}$
Therefore, we get $x=1,y=2$ and $z=-1$.
Therefore, the solution for the system of equations$2x+3y+3z=5,x-2y+z=-4,3x-y-2z=3$ is $x=1,y=2,z=-1$
Hence, the answer is $x=1,y=2,z=-1$
Note: While solving this question one might make a mistake by taking adjoint matrix as cofactor matrix directly and finding out the inverse of the matrix without converting it into the transpose of cofactor matrix. But Adjoint Matrix is the transpose of a cofactor matrix, so one needs to remember it while doing the question.
Complete step by step answer:
Let us consider the given system of linear equations,
$\begin{align}
& 2x+3y+3z=5 \\
& x-2y+z=-4 \\
& 3x-y-2z=3 \\
\end{align}$
Now, we represent this system of linear equations in matrix form i.e., $AX=B$ where
$A=\left[ \begin{matrix}
2 & 3 & 3 \\
1 & -2 & 1 \\
3 & -1 & -2 \\
\end{matrix} \right]$, $X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
5 \\
-4 \\
3 \\
\end{matrix} \right]$
So, let us check whether the determinant is equal to zero or not equal to zero.
Now, let us consider the formula,
$\left| \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right|={{a}_{11}}\left( {{a}_{22}}{{a}_{33}}-{{a}_{23}}{{a}_{32}} \right)-{{a}_{21}}\left( {{a}_{12}}{{a}_{33}}-{{a}_{13}}{{a}_{32}} \right)+{{a}_{31}}\left( {{a}_{12}}{{a}_{23}}-{{a}_{13}}{{a}_{22}} \right)$
By using the above formula,
$\left| A \right|=\left| \begin{matrix}
2 & 3 & 3 \\
1 & -2 & 1 \\
3 & -1 & -2 \\
\end{matrix} \right|=2\left( 4+1 \right)-1\left( -6+3 \right)+3\left( 3+6 \right)$
$\begin{align}
& \left| A \right|=2\left( 5 \right)-1\left( -3 \right)+3\left( 9 \right) \\
& \left| A \right|=10+3+27 \\
& \left| A \right|=40 \\
\end{align}$
So, we got
$\left| A \right|\ne 0$
So, we can say that ${{A}^{-1}}$ exists.
Let us consider the formula,
${{A}^{-1}}=\dfrac{1}{\left| A \right|}AdjA$
So now, we find the matrix $AdjA$.
To find the adjoint of a matrix, first we find the cofactor matrix of the given matrix. Then we find the transpose of the cofactor matrix.
We have, $A=\left[ \begin{matrix}
2 & 3 & 3 \\
1 & -2 & 1 \\
3 & -1 & -2 \\
\end{matrix} \right]$
For finding the inverse we have to find the cofactor matrix of A. So, first let us find the cofactors of every element in the matrix.
Cofactor of 2 = $\left| \begin{matrix}
-2 & 1 \\
-1 & -2 \\
\end{matrix} \right|=-2\left( -2 \right)-1\left( -1 \right)=5$
Cofactor of 3 = $-\left| \begin{matrix}
1 & 1 \\
3 & -2 \\
\end{matrix} \right|=-\left( 1\left( -2 \right)-1\left( 3 \right) \right)=5$
Cofactor of 3 = $\left| \begin{matrix}
1 & -2 \\
3 & -1 \\
\end{matrix} \right|=1\left( -1 \right)-\left( -2 \right)\left( 3 \right)=5$
Cofactor of 1 = $-\left| \begin{matrix}
3 & 3 \\
-1 & -2 \\
\end{matrix} \right|=-\left( 3\left( -2 \right)-3\left( -1 \right) \right)=3$
Cofactor of -2 = $\left| \begin{matrix}
2 & 3 \\
3 & -2 \\
\end{matrix} \right|=2\left( -2 \right)-3\left( 3 \right)=-13$
Cofactor of 1 = $-\left| \begin{matrix}
2 & 3 \\
3 & -1 \\
\end{matrix} \right|=-\left( 2\left( -1 \right)-3\left( 3 \right) \right)=11$
Cofactor of 3 = $\left| \begin{matrix}
3 & 3 \\
-2 & 1 \\
\end{matrix} \right|=3\left( 1 \right)-3\left( -2 \right)=9$
Cofactor of -1 = $-\left| \begin{matrix}
2 & 3 \\
1 & 1 \\
\end{matrix} \right|=-\left( 2\left( 1 \right)-3\left( 1 \right) \right)=1$
Cofactor of -2 = $\left| \begin{matrix}
2 & 3 \\
1 & -2 \\
\end{matrix} \right|=2\left( -2 \right)-3\left( 1 \right)=-7$
We get the cofactor matrix = $\left[ \begin{matrix}
5 & 5 & 5 \\
3 & -13 & 11 \\
9 & 1 & -7 \\
\end{matrix} \right]$
Now, we get $AdjA$ by taking the transpose of cofactor matrix.
$AdjA=\left[ \begin{matrix}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7 \\
\end{matrix} \right]$
Now, let us consider the formula, ${{A}^{-1}}=\dfrac{1}{\left| A \right|}AdjA$
By using the above formula, we get
$AdjA=\dfrac{1}{40}\left[ \begin{matrix}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7 \\
\end{matrix} \right]$
Let us consider the formula $X={{A}^{-1}}B$
By using the above formula, we get
$\begin{align}
& X=\dfrac{1}{\left| 40 \right|}\left[ \begin{matrix}
5 & 3 & 9 \\
5 & -13 & 1 \\
5 & 11 & -7 \\
\end{matrix} \right]\left[ \begin{matrix}
5 \\
-4 \\
3 \\
\end{matrix} \right] \\
& \\
& X=\dfrac{1}{\left| 40 \right|}\left[ \begin{matrix}
5\left( 5 \right)+3\left( -4 \right)+9\left( 3 \right) \\
5\left( 5 \right)-13\left( -4 \right)+1\left( 3 \right) \\
5\left( 5 \right)+11\left( -4 \right)-7\left( 3 \right) \\
\end{matrix} \right] \\
& \\
& X=\dfrac{1}{\left| 40 \right|}\left[ \begin{matrix}
25-12+27 \\
25+52+3 \\
25-44-21 \\
\end{matrix} \right] \\
& \\
& X=\dfrac{1}{\left| 40 \right|}\left[ \begin{matrix}
40 \\
80 \\
-40 \\
\end{matrix} \right] \\
& \\
& X=\left[ \begin{matrix}
\dfrac{40}{40} \\
\dfrac{80}{40} \\
\dfrac{-40}{40} \\
\end{matrix} \right] \\
& \\
& X=\left[ \begin{matrix}
1 \\
2 \\
-1 \\
\end{matrix} \right] \\
\end{align}$
Therefore, we get $x=1,y=2$ and $z=-1$.
Therefore, the solution for the system of equations$2x+3y+3z=5,x-2y+z=-4,3x-y-2z=3$ is $x=1,y=2,z=-1$
Hence, the answer is $x=1,y=2,z=-1$
Note: While solving this question one might make a mistake by taking adjoint matrix as cofactor matrix directly and finding out the inverse of the matrix without converting it into the transpose of cofactor matrix. But Adjoint Matrix is the transpose of a cofactor matrix, so one needs to remember it while doing the question.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

