
Using matrices solve the following system of equations:
\[x + y - z = 3\];\[2x + 3y + z = 10\];\[3x - y - 7z = 1\].
Answer
560.1k+ views
Hint: To solve the question, at first we have to find out the coefficients of x, y and z from the system of equation and represent it in matrix P. x, y, and z in the system of linear equations are represented in the column matrix X and the constants in the system of equations are represented in the column matrix Q. By solving the matrix equation that is \[PX = Q\]we can get the respective values of x, y and z.
Complete step by step answer:
The system of equations are given by,
\[x+y-z=3\]…………….. (1)
\[2x+3y+z=10\]………………… (2)
And \[3x-y-7z=1\] ………………….. (3)
Now we must represent the above system of equations in matrices. The three sets of coefficients \[1,1,-1\]; \[2,3,1\] and\[3,-1,-7\]must occupy first, second and third rows respectively in the matrix P which is given by
\[P=\left[ \begin{matrix}
1 & 1 & -1 \\
2 & 3 & 1 \\
3 & -1 & -7 \\
\end{matrix} \right]\]……………… (4)
And let the matrix
\[X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]\]………………… (5)
And\[Q=\left[ \begin{matrix}
3 \\
10 \\
1 \\
\end{matrix} \right]\]…….. (6)
We know the system of equation can be written in matrix form
\[\Rightarrow PX=Q\]
Or, \[\Rightarrow X={{P}^{-1}}Q\]…………………… (7)
Where \[{{P}^{-1}}\] is the inverse matrix of P.? Now we will determine\[{{P}^{-1}}\]. To find out the inverse at first let’s find out the determinant of P and cofactors of each element in the matrix P.
The determinant of P is given by
\[\left| P \right|=\left| \begin{matrix}
1 & 1 & -1 \\
2 & 3 & 1 \\
3 & -1 & -7 \\
\end{matrix} \right|\]
\[=1\times \left| \begin{matrix}
3 & 1 \\
-1 & -7 \\
\end{matrix} \right|-1\times \left| \begin{matrix}
2 & 1 \\
3 & -7 \\
\end{matrix} \right|+(-1)\left| \begin{matrix}
2 & 3 \\
3 & -1 \\
\end{matrix} \right|\]
On solving, we get
\[\begin{align}
& =-21+1-(-14-3)-(-2-9) \\
& =-20+17+11
\end{align}\]
\[=8\]……..(8)
Let the cofactor matrix of P be\[\left[ \begin{matrix}
{{C}_{11}} & {{C}_{12}} & {{C}_{13}} \\
{{C}_{21}} & {{C}_{22}} & {{C}_{23}} \\
{{C}_{31}} & {{C}_{32}} & {{C}_{33}} \\
\end{matrix} \right]\].
Now
\[{{C}_{11}}={{(-1)}^{1+1}}\left| \begin{matrix}
3 & 1 \\
-1 & -7 \\
\end{matrix} \right|=1\left( -21+1 \right)=-20\]
\[{{C}_{12}}={{(-1)}^{1+2}}\left| \begin{matrix}
2 & 1 \\
3 & -7 \\
\end{matrix} \right|=\left( -1 \right)\left( -14-3 \right)=17\]
\[{{C}_{13}}={{(-1)}^{1+3}}\left| \begin{matrix}
2 & 3 \\
3 & -1 \\
\end{matrix} \right|=1\left( -2-9 \right)=-11\]
\[{{C}_{21}}={{(-1)}^{2+1}}\left| \begin{matrix}
1 & -1 \\
-1 & -7 \\
\end{matrix} \right|=\left( -1 \right)\left( -7-1 \right)=8\]
\[{{C}_{22}}={{(-1)}^{2+2}}\left| \begin{matrix}
1 & -1 \\
3 & -7 \\
\end{matrix} \right|=1\left( -7+3 \right)=-4\]
\[{{C}_{23}}={{(-1)}^{2+3}}\left| \begin{matrix}
1 & 1 \\
3 & -1 \\
\end{matrix} \right|=\left( -1 \right)\left( -1-3 \right)=4\]
\[{{C}_{31}}={{(-1)}^{3+1}}\left| \begin{matrix}
1 & -1 \\
3 & 1 \\
\end{matrix} \right|=1\left( 1+3 \right)=4\]
\[{{C}_{32}}={{(-1)}^{3+2}}\left| \begin{matrix}
1 & -1 \\
2 & 1 \\
\end{matrix} \right|=\left( -1 \right)\left( 1+2 \right)=-3\]
\[{{C}_{33}}={{(-1)}^{3+3}}\left| \begin{matrix}
1 & 1 \\
2 & 3 \\
\end{matrix} \right|=1\left( 3-2 \right)=1\]
The adjoint of matrix P is the transpose of cofactor matrix of P which is defined by
\[adjP={{\left[ \begin{matrix}
{{C}_{11}} & {{C}_{12}} & {{C}_{13}} \\
{{C}_{21}} & {{C}_{22}} & {{C}_{23}} \\
{{C}_{31}} & {{C}_{32}} & {{C}_{33}} \\
\end{matrix} \right]}^{T}}\]
\[=\left[ \begin{matrix}
{{C}_{11}} & {{C}_{21}} & {{C}_{31}} \\
{{C}_{12}} & {{C}_{22}} & {{C}_{32}} \\
{{C}_{13}} & {{C}_{23}} & {{C}_{33}} \\
\end{matrix} \right]\]………………………… (9)
Substituting the cofactor values in eq. (9) we will get
\[adjP=\left[ \begin{matrix}
-20 & 8 & 4 \\
17 & -4 & -3 \\
-11 & 4 & 1 \\
\end{matrix} \right]\] ……………………… (10)
Now we now the inverse matrix of P is defined by
\[{{P}^{-1}}=\dfrac{adjP}{\left| P \right|}\] ………………………………… (11)
Substituting the values of eq. (8) and (10) in eq. (11) we will get
\[{{P}^{-1}}=\dfrac{adjP}{\left| P \right|}\]
\[=\dfrac{1}{8}\left[ \begin{matrix}
-20 & 8 & 4 \\
17 & -4 & -3 \\
-11 & 4 & 1 \\
\end{matrix} \right]\]…………………………. (12)
Substituting the values of eq. (5), (6) and (12) in eq. (7) we will get
\[\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{8}\left[ \begin{matrix}
-20 & 8 & 4 \\
17 & -4 & -3 \\
-11 & 4 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
3 \\
10 \\
1 \\
\end{matrix} \right]\]
\[\begin{align}
& =\dfrac{1}{8}\left[ \begin{matrix}
-20\times 3+8\times 10+4\times 1 \\
17\times 3+(-4)\times 10+(-3)\times 1 \\
(-11)\times 3+4\times 10+1\times 1 \\
\end{matrix} \right] \\
& =\dfrac{1}{8}\left[ \begin{matrix}
24 \\
8 \\
8 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
\dfrac{24}{8} \\
\dfrac{8}{8} \\
\dfrac{8}{8} \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
3 \\
1 \\
1 \\
\end{matrix} \right]
\end{align}\]
So, \[\Rightarrow \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
3 \\
1 \\
1 \\
\end{matrix} \right]\] ………………………………. (12)
Equating the rows of the matrices of both the sides we will get
\[x=3,y=1,z=1\]
So, the correct answer is “Option A”.
Note: If the determinant of a matrix is zero then its inverse does not exist. While representing a system of equations in matrix form, it should be observed that the coefficients are placed in an order. The product of matrices is not commutative therefore \[X = {P^{ - 1}}Q \ne Q{P^{ - 1}}\].
Complete step by step answer:
The system of equations are given by,
\[x+y-z=3\]…………….. (1)
\[2x+3y+z=10\]………………… (2)
And \[3x-y-7z=1\] ………………….. (3)
Now we must represent the above system of equations in matrices. The three sets of coefficients \[1,1,-1\]; \[2,3,1\] and\[3,-1,-7\]must occupy first, second and third rows respectively in the matrix P which is given by
\[P=\left[ \begin{matrix}
1 & 1 & -1 \\
2 & 3 & 1 \\
3 & -1 & -7 \\
\end{matrix} \right]\]……………… (4)
And let the matrix
\[X=\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]\]………………… (5)
And\[Q=\left[ \begin{matrix}
3 \\
10 \\
1 \\
\end{matrix} \right]\]…….. (6)
We know the system of equation can be written in matrix form
\[\Rightarrow PX=Q\]
Or, \[\Rightarrow X={{P}^{-1}}Q\]…………………… (7)
Where \[{{P}^{-1}}\] is the inverse matrix of P.? Now we will determine\[{{P}^{-1}}\]. To find out the inverse at first let’s find out the determinant of P and cofactors of each element in the matrix P.
The determinant of P is given by
\[\left| P \right|=\left| \begin{matrix}
1 & 1 & -1 \\
2 & 3 & 1 \\
3 & -1 & -7 \\
\end{matrix} \right|\]
\[=1\times \left| \begin{matrix}
3 & 1 \\
-1 & -7 \\
\end{matrix} \right|-1\times \left| \begin{matrix}
2 & 1 \\
3 & -7 \\
\end{matrix} \right|+(-1)\left| \begin{matrix}
2 & 3 \\
3 & -1 \\
\end{matrix} \right|\]
On solving, we get
\[\begin{align}
& =-21+1-(-14-3)-(-2-9) \\
& =-20+17+11
\end{align}\]
\[=8\]……..(8)
Let the cofactor matrix of P be\[\left[ \begin{matrix}
{{C}_{11}} & {{C}_{12}} & {{C}_{13}} \\
{{C}_{21}} & {{C}_{22}} & {{C}_{23}} \\
{{C}_{31}} & {{C}_{32}} & {{C}_{33}} \\
\end{matrix} \right]\].
Now
\[{{C}_{11}}={{(-1)}^{1+1}}\left| \begin{matrix}
3 & 1 \\
-1 & -7 \\
\end{matrix} \right|=1\left( -21+1 \right)=-20\]
\[{{C}_{12}}={{(-1)}^{1+2}}\left| \begin{matrix}
2 & 1 \\
3 & -7 \\
\end{matrix} \right|=\left( -1 \right)\left( -14-3 \right)=17\]
\[{{C}_{13}}={{(-1)}^{1+3}}\left| \begin{matrix}
2 & 3 \\
3 & -1 \\
\end{matrix} \right|=1\left( -2-9 \right)=-11\]
\[{{C}_{21}}={{(-1)}^{2+1}}\left| \begin{matrix}
1 & -1 \\
-1 & -7 \\
\end{matrix} \right|=\left( -1 \right)\left( -7-1 \right)=8\]
\[{{C}_{22}}={{(-1)}^{2+2}}\left| \begin{matrix}
1 & -1 \\
3 & -7 \\
\end{matrix} \right|=1\left( -7+3 \right)=-4\]
\[{{C}_{23}}={{(-1)}^{2+3}}\left| \begin{matrix}
1 & 1 \\
3 & -1 \\
\end{matrix} \right|=\left( -1 \right)\left( -1-3 \right)=4\]
\[{{C}_{31}}={{(-1)}^{3+1}}\left| \begin{matrix}
1 & -1 \\
3 & 1 \\
\end{matrix} \right|=1\left( 1+3 \right)=4\]
\[{{C}_{32}}={{(-1)}^{3+2}}\left| \begin{matrix}
1 & -1 \\
2 & 1 \\
\end{matrix} \right|=\left( -1 \right)\left( 1+2 \right)=-3\]
\[{{C}_{33}}={{(-1)}^{3+3}}\left| \begin{matrix}
1 & 1 \\
2 & 3 \\
\end{matrix} \right|=1\left( 3-2 \right)=1\]
The adjoint of matrix P is the transpose of cofactor matrix of P which is defined by
\[adjP={{\left[ \begin{matrix}
{{C}_{11}} & {{C}_{12}} & {{C}_{13}} \\
{{C}_{21}} & {{C}_{22}} & {{C}_{23}} \\
{{C}_{31}} & {{C}_{32}} & {{C}_{33}} \\
\end{matrix} \right]}^{T}}\]
\[=\left[ \begin{matrix}
{{C}_{11}} & {{C}_{21}} & {{C}_{31}} \\
{{C}_{12}} & {{C}_{22}} & {{C}_{32}} \\
{{C}_{13}} & {{C}_{23}} & {{C}_{33}} \\
\end{matrix} \right]\]………………………… (9)
Substituting the cofactor values in eq. (9) we will get
\[adjP=\left[ \begin{matrix}
-20 & 8 & 4 \\
17 & -4 & -3 \\
-11 & 4 & 1 \\
\end{matrix} \right]\] ……………………… (10)
Now we now the inverse matrix of P is defined by
\[{{P}^{-1}}=\dfrac{adjP}{\left| P \right|}\] ………………………………… (11)
Substituting the values of eq. (8) and (10) in eq. (11) we will get
\[{{P}^{-1}}=\dfrac{adjP}{\left| P \right|}\]
\[=\dfrac{1}{8}\left[ \begin{matrix}
-20 & 8 & 4 \\
17 & -4 & -3 \\
-11 & 4 & 1 \\
\end{matrix} \right]\]…………………………. (12)
Substituting the values of eq. (5), (6) and (12) in eq. (7) we will get
\[\left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\dfrac{1}{8}\left[ \begin{matrix}
-20 & 8 & 4 \\
17 & -4 & -3 \\
-11 & 4 & 1 \\
\end{matrix} \right]\left[ \begin{matrix}
3 \\
10 \\
1 \\
\end{matrix} \right]\]
\[\begin{align}
& =\dfrac{1}{8}\left[ \begin{matrix}
-20\times 3+8\times 10+4\times 1 \\
17\times 3+(-4)\times 10+(-3)\times 1 \\
(-11)\times 3+4\times 10+1\times 1 \\
\end{matrix} \right] \\
& =\dfrac{1}{8}\left[ \begin{matrix}
24 \\
8 \\
8 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
\dfrac{24}{8} \\
\dfrac{8}{8} \\
\dfrac{8}{8} \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
3 \\
1 \\
1 \\
\end{matrix} \right]
\end{align}\]
So, \[\Rightarrow \left[ \begin{matrix}
x \\
y \\
z \\
\end{matrix} \right]=\left[ \begin{matrix}
3 \\
1 \\
1 \\
\end{matrix} \right]\] ………………………………. (12)
Equating the rows of the matrices of both the sides we will get
\[x=3,y=1,z=1\]
So, the correct answer is “Option A”.
Note: If the determinant of a matrix is zero then its inverse does not exist. While representing a system of equations in matrix form, it should be observed that the coefficients are placed in an order. The product of matrices is not commutative therefore \[X = {P^{ - 1}}Q \ne Q{P^{ - 1}}\].
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

