
Using integration, find the area bounded by the curve ${{x}^{2}}=4y$ and the line $x=4y-2$.
Answer
510.3k+ views
Hint: We start solving this problem by first finding the points of intersection of the given curves. Then we find the area of the region bounded by each curve with x-axis between the points of intersection using the integration formula for area $\int\limits_{a}^{b}{f\left( x \right)dx}$. Then we subtract the area of the smaller curve from the area of the larger one to get the area of the required region.
Complete step-by-step solution:
First, let us find the points of intersection of the given curves.
${{x}^{2}}=4y\Rightarrow y=\dfrac{{{x}^{2}}}{4}$
Substituting it in the equation of line
$\begin{align}
& \Rightarrow x=4y-2 \\
& \Rightarrow x=4\left( \dfrac{{{x}^{2}}}{4} \right)-2 \\
& \Rightarrow x={{x}^{2}}-2 \\
& \Rightarrow {{x}^{2}}-x-2=0 \\
& \Rightarrow \left( x-2 \right)\left( x+1 \right)=0 \\
& \Rightarrow x=2,-1 \\
\end{align}$
When x=2, $y=\dfrac{{{x}^{2}}}{4}=\dfrac{{{2}^{2}}}{4}=\dfrac{4}{4}\Rightarrow y=1$
When x=-1, $y=\dfrac{{{x}^{2}}}{4}=\dfrac{{{\left( -1 \right)}^{2}}}{4}=\dfrac{1}{4}\Rightarrow y=\dfrac{1}{4}$
So, points of intersection of the two curves are $\left( 2,1 \right)$ and $\left( -1,\dfrac{1}{4} \right)$.
Now let us look at the plot
We need to find the area of the shaded region. As we see our required area can be written as the difference between the area of line and parabola between x=-1 and x=2.
Let us consider the formula for finding the area of region bounded by a function f(x) between x=a and x=b,
$\int\limits_{a}^{b}{f\left( x \right)dx}$
Using this formula, let us find the area of region bounded by curve ${{x}^{2}}=4y$ and x-axis between x=-1 and x=2.
$\begin{align}
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\int\limits_{-1}^{2}{{{x}^{2}}dx} \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\left[ \dfrac{{{x}^{3}}}{3} \right]_{-1}^{2} \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\left[ \dfrac{{{x}^{3}}}{3} \right]_{-1}^{2} \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\left[ \dfrac{{{2}^{3}}}{3}-\dfrac{{{\left( -1 \right)}^{3}}}{3} \right] \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\left[ \dfrac{8}{3}-\dfrac{-1}{3} \right] \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\left[ \dfrac{9}{3} \right] \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{3}{4}................\left( 1 \right) \\
\end{align}$
Now, let us find the area of region bounded by curve $x=4y-2$ and x-axis between x=-1 and x=2.
$\begin{align}
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\int\limits_{-1}^{2}{\left( x+2 \right)dx} \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\left[ \dfrac{{{x}^{2}}}{2}+2x \right]_{-1}^{2} \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\left[ \left( \dfrac{{{2}^{2}}}{2}+2\left( 2 \right) \right)-\left( \dfrac{{{\left( -1 \right)}^{2}}}{2}+2\left( -1 \right) \right) \right] \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\left[ \left( \dfrac{4}{2}+4 \right)-\left( \dfrac{1}{2}-2 \right) \right] \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\left[ \left( 2+4 \right)-\left( \dfrac{-3}{2} \right) \right] \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\left[ 6+\dfrac{3}{2} \right] \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\times \dfrac{15}{2} \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{15}{8}................\left( 2 \right) \\
\end{align}$
So, now we need to subtract the equation (1) from equation (2), to get our required area
$\begin{align}
& \Rightarrow \dfrac{15}{8}-\dfrac{3}{4} \\
& \Rightarrow \dfrac{9}{8} \\
\end{align}$
Hence, the area of required region is $\dfrac{9}{8}$ square units.
Hence, the answer is $\dfrac{9}{8}$ square units.
Note: We can solve this by using a formula too. The area bounded by two curves $f\left( x \right)$ and $g\left( x \right)$ between x=a and x=b is $\int\limits_{a}^{b}{\left( f\left( x \right)-g\left( x \right) \right)dx}$. Here our $f\left( x \right)$ is the line and $g\left( x \right)$ is the parabola. Then we get $\int\limits_{-1}^{2}{\left( \dfrac{x+2}{4}-\dfrac{{{x}^{2}}}{4} \right)}dx$, which is same as what we have done separately. So, one need to remember that both are same and should not confuse that both are different.
Complete step-by-step solution:
First, let us find the points of intersection of the given curves.
${{x}^{2}}=4y\Rightarrow y=\dfrac{{{x}^{2}}}{4}$
Substituting it in the equation of line
$\begin{align}
& \Rightarrow x=4y-2 \\
& \Rightarrow x=4\left( \dfrac{{{x}^{2}}}{4} \right)-2 \\
& \Rightarrow x={{x}^{2}}-2 \\
& \Rightarrow {{x}^{2}}-x-2=0 \\
& \Rightarrow \left( x-2 \right)\left( x+1 \right)=0 \\
& \Rightarrow x=2,-1 \\
\end{align}$
When x=2, $y=\dfrac{{{x}^{2}}}{4}=\dfrac{{{2}^{2}}}{4}=\dfrac{4}{4}\Rightarrow y=1$
When x=-1, $y=\dfrac{{{x}^{2}}}{4}=\dfrac{{{\left( -1 \right)}^{2}}}{4}=\dfrac{1}{4}\Rightarrow y=\dfrac{1}{4}$
So, points of intersection of the two curves are $\left( 2,1 \right)$ and $\left( -1,\dfrac{1}{4} \right)$.
Now let us look at the plot

We need to find the area of the shaded region. As we see our required area can be written as the difference between the area of line and parabola between x=-1 and x=2.
Let us consider the formula for finding the area of region bounded by a function f(x) between x=a and x=b,
$\int\limits_{a}^{b}{f\left( x \right)dx}$
Using this formula, let us find the area of region bounded by curve ${{x}^{2}}=4y$ and x-axis between x=-1 and x=2.
$\begin{align}
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\int\limits_{-1}^{2}{{{x}^{2}}dx} \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\left[ \dfrac{{{x}^{3}}}{3} \right]_{-1}^{2} \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\left[ \dfrac{{{x}^{3}}}{3} \right]_{-1}^{2} \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\left[ \dfrac{{{2}^{3}}}{3}-\dfrac{{{\left( -1 \right)}^{3}}}{3} \right] \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\left[ \dfrac{8}{3}-\dfrac{-1}{3} \right] \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{1}{4}\left[ \dfrac{9}{3} \right] \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{{{x}^{2}}}{4}dx=}\dfrac{3}{4}................\left( 1 \right) \\
\end{align}$
Now, let us find the area of region bounded by curve $x=4y-2$ and x-axis between x=-1 and x=2.
$\begin{align}
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\int\limits_{-1}^{2}{\left( x+2 \right)dx} \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\left[ \dfrac{{{x}^{2}}}{2}+2x \right]_{-1}^{2} \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\left[ \left( \dfrac{{{2}^{2}}}{2}+2\left( 2 \right) \right)-\left( \dfrac{{{\left( -1 \right)}^{2}}}{2}+2\left( -1 \right) \right) \right] \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\left[ \left( \dfrac{4}{2}+4 \right)-\left( \dfrac{1}{2}-2 \right) \right] \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\left[ \left( 2+4 \right)-\left( \dfrac{-3}{2} \right) \right] \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\left[ 6+\dfrac{3}{2} \right] \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{1}{4}\times \dfrac{15}{2} \\
& \Rightarrow \int\limits_{-1}^{2}{\dfrac{x+2}{4}dx=}\dfrac{15}{8}................\left( 2 \right) \\
\end{align}$
So, now we need to subtract the equation (1) from equation (2), to get our required area
$\begin{align}
& \Rightarrow \dfrac{15}{8}-\dfrac{3}{4} \\
& \Rightarrow \dfrac{9}{8} \\
\end{align}$
Hence, the area of required region is $\dfrac{9}{8}$ square units.
Hence, the answer is $\dfrac{9}{8}$ square units.
Note: We can solve this by using a formula too. The area bounded by two curves $f\left( x \right)$ and $g\left( x \right)$ between x=a and x=b is $\int\limits_{a}^{b}{\left( f\left( x \right)-g\left( x \right) \right)dx}$. Here our $f\left( x \right)$ is the line and $g\left( x \right)$ is the parabola. Then we get $\int\limits_{-1}^{2}{\left( \dfrac{x+2}{4}-\dfrac{{{x}^{2}}}{4} \right)}dx$, which is same as what we have done separately. So, one need to remember that both are same and should not confuse that both are different.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
