
Using identities, evaluate the following:
(i) ${{71}^{2}}$
(ii) ${{99}^{2}}$
(iii) ${{102}^{2}}$
(iv) ${{998}^{2}}$
(v) ${{5.2}^{2}}$
(vi) $297\times 303$
(vii) $78\times 82$
(viii) ${{8.9}^{2}}$
(ix) $1.05\times 9.5$
Answer
603.9k+ views
Hint: Use different algebraic identities in different questions to simplify the problem and for ease in calculation. Use:
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
& \left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}} \\
\end{align}\]
“Complete step-by-step answer:”
An algebraic identity is an equality that holds for any value of its variable. For example, the identity ${{\left( x+y \right)}^{2}}={{x}^{2}}+{{y}^{2}}+2xy$ holds for all values of $x$ and $y$.
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\text{ }................\text{(1)} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\text{ }................\text{(2)} \\
& \left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\text{ }................\text{(3)} \\
\end{align}\]
Now, we come to the question one by one.
(i) ${{71}^{2}}$
This can be solved by using identity (1).
\[71\text{ }=\text{ }70+1\], therefore,
$\begin{align}
& {{71}^{2}}={{\left( 70+1 \right)}^{2}}={{70}^{2}}+{{1}^{2}}+2\times 70\times 1 \\
& =4900+1+140 \\
& =5041 \\
\end{align}$
(ii) ${{99}^{2}}$
This can be solved by using identity (2).
$99=100-1$, therefore,
$\begin{align}
& {{99}^{2}}={{\left( 100-1 \right)}^{2}}={{100}^{2}}+{{1}^{2}}-2\times 100\times 1 \\
& =10000+1-200 \\
& =9801 \\
\end{align}$
(iii) ${{102}^{2}}$
$102=100+2$
Using identity (1) we have,
$\begin{align}
& {{\left( 102 \right)}^{2}}={{\left( 100+2 \right)}^{2}}={{100}^{2}}+{{2}^{2}}+2\times 100\times 2 \\
& =10000+4+400 \\
& =10404 \\
\end{align}$
(iv) ${{998}^{2}}$
\[\begin{align}
& {{\left( 998 \right)}^{2}}={{\left( 1000-2 \right)}^{2}}={{1000}^{2}}+{{2}^{2}}-2\times 1000\times 2 \\
& =1000000+4-4000 \\
& =996004 \\
\end{align}\]
(v) ${{5.2}^{2}}$
\[\begin{align}
& {{\left( 5.2 \right)}^{2}}={{\left( 5+0.2 \right)}^{2}}={{5}^{2}}+{{0.2}^{2}}-2\times 5\times 0.2 \\
& =25+0.04-2 \\
& =23.04 \\
\end{align}\]
(vi) $297\times 303$
This can be written as, $297\times 303=(300-3)\times (300+3)$.
Now, using identity (3) we get,
$\begin{align}
& (300-3)\times (300+3) \\
& ={{300}^{2}}-{{3}^{2}} \\
& =90000-9 \\
& =89991 \\
\end{align}$
(vii) $78\times 82$
$78\times 82=(80-2)\times (80+2)$
Again, using identity (3),
$\begin{align}
& (80-2)\times (80+2) \\
& ={{80}^{2}}-{{2}^{2}} \\
& =6400-4 \\
& =6396 \\
\end{align}$
(viii) ${{8.9}^{2}}$
\[8.9=(9-0.1)\], therefore using identity (2) we have,
$\begin{align}
& {{8.9}^{2}}={{(9-0.1)}^{2}} \\
& ={{9}^{2}}+{{0.1}^{2}}-2\times 9\times 0.1 \\
& =81+0.01-1.8 \\
& =79.21 \\
\end{align}$
(ix) $1.05\times 9.5$
$1.05\times 9.5=\left( 1+0.05 \right)\times \left( 1-0.5 \right)$
We can clearly see that this problem is not based on any identity. But it can be solved easily when we will break the decimal part and then multiply the two terms. Therefore,
$\begin{align}
& \left( 1+0.05 \right)\times \left( 1-0.5 \right) \\
& =1\times 1-1\times 0.5+1\times 0.05-0.05\times 0.5 \\
& =1-0.5+0.05-0.025 \\
& =0.525 \\
\end{align}$
Note: We have applied identity (1) in question (i), (iii) and (iv); identity (2) in question (ii), (iv) and (viii) and identity (3) in (vi) and (vii), while no identity has been used in question (ix). They are used in their respective places to make our calculation easier. Otherwise it would be difficult for us to directly multiply and calculate the value like in question number (iv) and (vi).
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
& \left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}} \\
\end{align}\]
“Complete step-by-step answer:”
An algebraic identity is an equality that holds for any value of its variable. For example, the identity ${{\left( x+y \right)}^{2}}={{x}^{2}}+{{y}^{2}}+2xy$ holds for all values of $x$ and $y$.
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\text{ }................\text{(1)} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\text{ }................\text{(2)} \\
& \left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\text{ }................\text{(3)} \\
\end{align}\]
Now, we come to the question one by one.
(i) ${{71}^{2}}$
This can be solved by using identity (1).
\[71\text{ }=\text{ }70+1\], therefore,
$\begin{align}
& {{71}^{2}}={{\left( 70+1 \right)}^{2}}={{70}^{2}}+{{1}^{2}}+2\times 70\times 1 \\
& =4900+1+140 \\
& =5041 \\
\end{align}$
(ii) ${{99}^{2}}$
This can be solved by using identity (2).
$99=100-1$, therefore,
$\begin{align}
& {{99}^{2}}={{\left( 100-1 \right)}^{2}}={{100}^{2}}+{{1}^{2}}-2\times 100\times 1 \\
& =10000+1-200 \\
& =9801 \\
\end{align}$
(iii) ${{102}^{2}}$
$102=100+2$
Using identity (1) we have,
$\begin{align}
& {{\left( 102 \right)}^{2}}={{\left( 100+2 \right)}^{2}}={{100}^{2}}+{{2}^{2}}+2\times 100\times 2 \\
& =10000+4+400 \\
& =10404 \\
\end{align}$
(iv) ${{998}^{2}}$
\[\begin{align}
& {{\left( 998 \right)}^{2}}={{\left( 1000-2 \right)}^{2}}={{1000}^{2}}+{{2}^{2}}-2\times 1000\times 2 \\
& =1000000+4-4000 \\
& =996004 \\
\end{align}\]
(v) ${{5.2}^{2}}$
\[\begin{align}
& {{\left( 5.2 \right)}^{2}}={{\left( 5+0.2 \right)}^{2}}={{5}^{2}}+{{0.2}^{2}}-2\times 5\times 0.2 \\
& =25+0.04-2 \\
& =23.04 \\
\end{align}\]
(vi) $297\times 303$
This can be written as, $297\times 303=(300-3)\times (300+3)$.
Now, using identity (3) we get,
$\begin{align}
& (300-3)\times (300+3) \\
& ={{300}^{2}}-{{3}^{2}} \\
& =90000-9 \\
& =89991 \\
\end{align}$
(vii) $78\times 82$
$78\times 82=(80-2)\times (80+2)$
Again, using identity (3),
$\begin{align}
& (80-2)\times (80+2) \\
& ={{80}^{2}}-{{2}^{2}} \\
& =6400-4 \\
& =6396 \\
\end{align}$
(viii) ${{8.9}^{2}}$
\[8.9=(9-0.1)\], therefore using identity (2) we have,
$\begin{align}
& {{8.9}^{2}}={{(9-0.1)}^{2}} \\
& ={{9}^{2}}+{{0.1}^{2}}-2\times 9\times 0.1 \\
& =81+0.01-1.8 \\
& =79.21 \\
\end{align}$
(ix) $1.05\times 9.5$
$1.05\times 9.5=\left( 1+0.05 \right)\times \left( 1-0.5 \right)$
We can clearly see that this problem is not based on any identity. But it can be solved easily when we will break the decimal part and then multiply the two terms. Therefore,
$\begin{align}
& \left( 1+0.05 \right)\times \left( 1-0.5 \right) \\
& =1\times 1-1\times 0.5+1\times 0.05-0.05\times 0.5 \\
& =1-0.5+0.05-0.025 \\
& =0.525 \\
\end{align}$
Note: We have applied identity (1) in question (i), (iii) and (iv); identity (2) in question (ii), (iv) and (viii) and identity (3) in (vi) and (vii), while no identity has been used in question (ix). They are used in their respective places to make our calculation easier. Otherwise it would be difficult for us to directly multiply and calculate the value like in question number (iv) and (vi).
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

