
Using identities, evaluate the following:
(i) ${{71}^{2}}$
(ii) ${{99}^{2}}$
(iii) ${{102}^{2}}$
(iv) ${{998}^{2}}$
(v) ${{5.2}^{2}}$
(vi) $297\times 303$
(vii) $78\times 82$
(viii) ${{8.9}^{2}}$
(ix) $1.05\times 9.5$
Answer
618.3k+ views
Hint: Use different algebraic identities in different questions to simplify the problem and for ease in calculation. Use:
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
& \left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}} \\
\end{align}\]
“Complete step-by-step answer:”
An algebraic identity is an equality that holds for any value of its variable. For example, the identity ${{\left( x+y \right)}^{2}}={{x}^{2}}+{{y}^{2}}+2xy$ holds for all values of $x$ and $y$.
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\text{ }................\text{(1)} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\text{ }................\text{(2)} \\
& \left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\text{ }................\text{(3)} \\
\end{align}\]
Now, we come to the question one by one.
(i) ${{71}^{2}}$
This can be solved by using identity (1).
\[71\text{ }=\text{ }70+1\], therefore,
$\begin{align}
& {{71}^{2}}={{\left( 70+1 \right)}^{2}}={{70}^{2}}+{{1}^{2}}+2\times 70\times 1 \\
& =4900+1+140 \\
& =5041 \\
\end{align}$
(ii) ${{99}^{2}}$
This can be solved by using identity (2).
$99=100-1$, therefore,
$\begin{align}
& {{99}^{2}}={{\left( 100-1 \right)}^{2}}={{100}^{2}}+{{1}^{2}}-2\times 100\times 1 \\
& =10000+1-200 \\
& =9801 \\
\end{align}$
(iii) ${{102}^{2}}$
$102=100+2$
Using identity (1) we have,
$\begin{align}
& {{\left( 102 \right)}^{2}}={{\left( 100+2 \right)}^{2}}={{100}^{2}}+{{2}^{2}}+2\times 100\times 2 \\
& =10000+4+400 \\
& =10404 \\
\end{align}$
(iv) ${{998}^{2}}$
\[\begin{align}
& {{\left( 998 \right)}^{2}}={{\left( 1000-2 \right)}^{2}}={{1000}^{2}}+{{2}^{2}}-2\times 1000\times 2 \\
& =1000000+4-4000 \\
& =996004 \\
\end{align}\]
(v) ${{5.2}^{2}}$
\[\begin{align}
& {{\left( 5.2 \right)}^{2}}={{\left( 5+0.2 \right)}^{2}}={{5}^{2}}+{{0.2}^{2}}-2\times 5\times 0.2 \\
& =25+0.04-2 \\
& =23.04 \\
\end{align}\]
(vi) $297\times 303$
This can be written as, $297\times 303=(300-3)\times (300+3)$.
Now, using identity (3) we get,
$\begin{align}
& (300-3)\times (300+3) \\
& ={{300}^{2}}-{{3}^{2}} \\
& =90000-9 \\
& =89991 \\
\end{align}$
(vii) $78\times 82$
$78\times 82=(80-2)\times (80+2)$
Again, using identity (3),
$\begin{align}
& (80-2)\times (80+2) \\
& ={{80}^{2}}-{{2}^{2}} \\
& =6400-4 \\
& =6396 \\
\end{align}$
(viii) ${{8.9}^{2}}$
\[8.9=(9-0.1)\], therefore using identity (2) we have,
$\begin{align}
& {{8.9}^{2}}={{(9-0.1)}^{2}} \\
& ={{9}^{2}}+{{0.1}^{2}}-2\times 9\times 0.1 \\
& =81+0.01-1.8 \\
& =79.21 \\
\end{align}$
(ix) $1.05\times 9.5$
$1.05\times 9.5=\left( 1+0.05 \right)\times \left( 1-0.5 \right)$
We can clearly see that this problem is not based on any identity. But it can be solved easily when we will break the decimal part and then multiply the two terms. Therefore,
$\begin{align}
& \left( 1+0.05 \right)\times \left( 1-0.5 \right) \\
& =1\times 1-1\times 0.5+1\times 0.05-0.05\times 0.5 \\
& =1-0.5+0.05-0.025 \\
& =0.525 \\
\end{align}$
Note: We have applied identity (1) in question (i), (iii) and (iv); identity (2) in question (ii), (iv) and (viii) and identity (3) in (vi) and (vii), while no identity has been used in question (ix). They are used in their respective places to make our calculation easier. Otherwise it would be difficult for us to directly multiply and calculate the value like in question number (iv) and (vi).
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
& \left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}} \\
\end{align}\]
“Complete step-by-step answer:”
An algebraic identity is an equality that holds for any value of its variable. For example, the identity ${{\left( x+y \right)}^{2}}={{x}^{2}}+{{y}^{2}}+2xy$ holds for all values of $x$ and $y$.
\[\begin{align}
& {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab\text{ }................\text{(1)} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab\text{ }................\text{(2)} \\
& \left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}\text{ }................\text{(3)} \\
\end{align}\]
Now, we come to the question one by one.
(i) ${{71}^{2}}$
This can be solved by using identity (1).
\[71\text{ }=\text{ }70+1\], therefore,
$\begin{align}
& {{71}^{2}}={{\left( 70+1 \right)}^{2}}={{70}^{2}}+{{1}^{2}}+2\times 70\times 1 \\
& =4900+1+140 \\
& =5041 \\
\end{align}$
(ii) ${{99}^{2}}$
This can be solved by using identity (2).
$99=100-1$, therefore,
$\begin{align}
& {{99}^{2}}={{\left( 100-1 \right)}^{2}}={{100}^{2}}+{{1}^{2}}-2\times 100\times 1 \\
& =10000+1-200 \\
& =9801 \\
\end{align}$
(iii) ${{102}^{2}}$
$102=100+2$
Using identity (1) we have,
$\begin{align}
& {{\left( 102 \right)}^{2}}={{\left( 100+2 \right)}^{2}}={{100}^{2}}+{{2}^{2}}+2\times 100\times 2 \\
& =10000+4+400 \\
& =10404 \\
\end{align}$
(iv) ${{998}^{2}}$
\[\begin{align}
& {{\left( 998 \right)}^{2}}={{\left( 1000-2 \right)}^{2}}={{1000}^{2}}+{{2}^{2}}-2\times 1000\times 2 \\
& =1000000+4-4000 \\
& =996004 \\
\end{align}\]
(v) ${{5.2}^{2}}$
\[\begin{align}
& {{\left( 5.2 \right)}^{2}}={{\left( 5+0.2 \right)}^{2}}={{5}^{2}}+{{0.2}^{2}}-2\times 5\times 0.2 \\
& =25+0.04-2 \\
& =23.04 \\
\end{align}\]
(vi) $297\times 303$
This can be written as, $297\times 303=(300-3)\times (300+3)$.
Now, using identity (3) we get,
$\begin{align}
& (300-3)\times (300+3) \\
& ={{300}^{2}}-{{3}^{2}} \\
& =90000-9 \\
& =89991 \\
\end{align}$
(vii) $78\times 82$
$78\times 82=(80-2)\times (80+2)$
Again, using identity (3),
$\begin{align}
& (80-2)\times (80+2) \\
& ={{80}^{2}}-{{2}^{2}} \\
& =6400-4 \\
& =6396 \\
\end{align}$
(viii) ${{8.9}^{2}}$
\[8.9=(9-0.1)\], therefore using identity (2) we have,
$\begin{align}
& {{8.9}^{2}}={{(9-0.1)}^{2}} \\
& ={{9}^{2}}+{{0.1}^{2}}-2\times 9\times 0.1 \\
& =81+0.01-1.8 \\
& =79.21 \\
\end{align}$
(ix) $1.05\times 9.5$
$1.05\times 9.5=\left( 1+0.05 \right)\times \left( 1-0.5 \right)$
We can clearly see that this problem is not based on any identity. But it can be solved easily when we will break the decimal part and then multiply the two terms. Therefore,
$\begin{align}
& \left( 1+0.05 \right)\times \left( 1-0.5 \right) \\
& =1\times 1-1\times 0.5+1\times 0.05-0.05\times 0.5 \\
& =1-0.5+0.05-0.025 \\
& =0.525 \\
\end{align}$
Note: We have applied identity (1) in question (i), (iii) and (iv); identity (2) in question (ii), (iv) and (viii) and identity (3) in (vi) and (vii), while no identity has been used in question (ix). They are used in their respective places to make our calculation easier. Otherwise it would be difficult for us to directly multiply and calculate the value like in question number (iv) and (vi).
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

