
Using factor theorem, factorize each of the following polynomials: $2{{y}^{3}}-5{{y}^{2}}-19y+42$ .
Answer
516.9k+ views
Hint: To factorize $2{{y}^{3}}-5{{y}^{2}}-19y+42$ using factor theorem, we have to equate the given polynomial to f(y). Then, we have a trial and error method by substituting some values of y so that the above function will become 0. If \[f\left( -c \right)=0\] , then \[\left( y+c \right)\] is a factor of the polynomial f(y). If \[f\left( \dfrac{d}{c} \right)=\text{ }0\] then \[\left( cy-d \right)\] is a factor of the polynomial f(y). If \[f\left( -\dfrac{d}{c} \right)=\text{ }0\] , then \[\left( cy+d \right)\] is a factor of the polynomial f(y). . If \[f\left( c \right)=0\] , then \[\left( y-c \right)\] is a factor of the polynomial f(y). Then, we will divide the given polynomial by this factor. The quotient will be another polynomial. If we get the quotient as a quadratic polynomial, we have to further factorize this polynomial using splitting the middle terms or using the formula $y=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ .
Complete step by step solution:
We have to factorize $2{{y}^{3}}-5{{y}^{2}}-19y+42$ using the factor theorem. We have to first equate the given polynomial to f(y).
$\Rightarrow f\left( y \right)=2{{y}^{3}}-5{{y}^{2}}-19y+42$
Now, we have to substitute some values of y so that the above function will become 0. This is the trial and error method.
Let us consider $y=0$ .
$\Rightarrow f\left( 0 \right)=2\times 0-5\times 0-19\times 0+42=42\ne 0$
Hence, this value of y cannot be taken.
Now, we have to consider $y=1$ .
$\begin{align}
& \Rightarrow f\left( 1 \right)=2\times 1-5\times 1-19\times 1+42 \\
& \Rightarrow f\left( 1 \right)=2-5-19+42=20\ne 0 \\
\end{align}$
Hence, this value of y cannot be taken.
Now, let us consider $y=2$
$\begin{align}
& \Rightarrow f\left( 2 \right)=2{{\left( 2 \right)}^{3}}-5{{\left( 2 \right)}^{2}}-19\times 2+42 \\
& \Rightarrow f\left( 2 \right)=16-20-38+42=0 \\
\end{align}$
We can see that $\left( y-2 \right)$ is a factor of $2{{y}^{3}}-5{{y}^{2}}-19y+42$ .
Now, we have to divide $2{{y}^{3}}-5{{y}^{2}}-19y+42$ by $\left( y-2 \right)$ .
\[y-2\overset{2{{y}^{2}}-y-21}{\overline{\left){\begin{align}
& 2{{y}^{3}}-5{{y}^{2}}-19y+42 \\
& 2{{y}^{3}}-4{{y}^{2}} \\
& \left( - \right)\begin{matrix}
{} & \left( + \right) \\
\end{matrix} \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \begin{matrix}
{} & {} & -{{y}^{2}}-19y \\
\end{matrix} \\
& \begin{matrix}
{} & {} & -{{y}^{2}}+2y \\
\end{matrix} \\
& \begin{matrix}
{} & {} & \left( + \right)\begin{matrix}
{} & \left( - \right) \\
\end{matrix} \\
\end{matrix} \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \begin{matrix}
{} & {} & \begin{matrix}
{} & {} & -21y+42 \\
\end{matrix} \\
\end{matrix} \\
& \begin{matrix}
{} & {} & \begin{matrix}
{} & {} & -21y+42 \\
\end{matrix} \\
\end{matrix} \\
& \begin{matrix}
{} & {} & \begin{matrix}
{} & {} & \left( + \right)\begin{matrix}
{} & \left( - \right) \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \begin{matrix}
{} & {} & \begin{matrix}
{} & {} & \begin{matrix}
{} & {} & 0 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{align}}\right.}}\]
Hence, we can write f(y) as
$f\left( y \right)=\left( y-2 \right)\left( 2{{y}^{2}}-y-21 \right)$
Now, we can factorize $2{{y}^{2}}-y-21$ by splitting the middle term. We can write –y as \[6y-7y\] as the sum is -1 and product is -21.
$\Rightarrow f\left( y \right)=\left( y-2 \right)\left( 2{{y}^{2}}+6y-7y-21 \right)$
Let us take the common factors outside.
$\Rightarrow f\left( y \right)=\left( y-2 \right)\left[ 2y\left( y+3 \right)-7\left( y+3 \right) \right]$
We can again take the common factors outside.
$\Rightarrow f\left( y \right)=\left( y-2 \right)\left( 2y-7 \right)\left( y+3 \right)$
Note: Students must know the long division method thoroughly to factorize the given polynomial. If \[f\left( -c \right)=0\] , then \[\left( y+c \right)\] is a factor of the polynomial f(y). If \[f\left( \dfrac{d}{c} \right)=\text{ }0\] then \[\left( cy-d \right)\] is a factor of the polynomial f(y). If \[f\left( -\dfrac{d}{c} \right)=\text{ }0\] , then \[\left( cy+d \right)\] is a factor of the polynomial f(y). . If \[f\left( c \right)=0\] , then \[\left( y-c \right)\] is a factor of the polynomial f(y). We can also use synthetic division instead of long division.
Complete step by step solution:
We have to factorize $2{{y}^{3}}-5{{y}^{2}}-19y+42$ using the factor theorem. We have to first equate the given polynomial to f(y).
$\Rightarrow f\left( y \right)=2{{y}^{3}}-5{{y}^{2}}-19y+42$
Now, we have to substitute some values of y so that the above function will become 0. This is the trial and error method.
Let us consider $y=0$ .
$\Rightarrow f\left( 0 \right)=2\times 0-5\times 0-19\times 0+42=42\ne 0$
Hence, this value of y cannot be taken.
Now, we have to consider $y=1$ .
$\begin{align}
& \Rightarrow f\left( 1 \right)=2\times 1-5\times 1-19\times 1+42 \\
& \Rightarrow f\left( 1 \right)=2-5-19+42=20\ne 0 \\
\end{align}$
Hence, this value of y cannot be taken.
Now, let us consider $y=2$
$\begin{align}
& \Rightarrow f\left( 2 \right)=2{{\left( 2 \right)}^{3}}-5{{\left( 2 \right)}^{2}}-19\times 2+42 \\
& \Rightarrow f\left( 2 \right)=16-20-38+42=0 \\
\end{align}$
We can see that $\left( y-2 \right)$ is a factor of $2{{y}^{3}}-5{{y}^{2}}-19y+42$ .
Now, we have to divide $2{{y}^{3}}-5{{y}^{2}}-19y+42$ by $\left( y-2 \right)$ .
\[y-2\overset{2{{y}^{2}}-y-21}{\overline{\left){\begin{align}
& 2{{y}^{3}}-5{{y}^{2}}-19y+42 \\
& 2{{y}^{3}}-4{{y}^{2}} \\
& \left( - \right)\begin{matrix}
{} & \left( + \right) \\
\end{matrix} \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \begin{matrix}
{} & {} & -{{y}^{2}}-19y \\
\end{matrix} \\
& \begin{matrix}
{} & {} & -{{y}^{2}}+2y \\
\end{matrix} \\
& \begin{matrix}
{} & {} & \left( + \right)\begin{matrix}
{} & \left( - \right) \\
\end{matrix} \\
\end{matrix} \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \begin{matrix}
{} & {} & \begin{matrix}
{} & {} & -21y+42 \\
\end{matrix} \\
\end{matrix} \\
& \begin{matrix}
{} & {} & \begin{matrix}
{} & {} & -21y+42 \\
\end{matrix} \\
\end{matrix} \\
& \begin{matrix}
{} & {} & \begin{matrix}
{} & {} & \left( + \right)\begin{matrix}
{} & \left( - \right) \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
& \begin{matrix}
{} & {} & \begin{matrix}
{} & {} & \begin{matrix}
{} & {} & 0 \\
\end{matrix} \\
\end{matrix} \\
\end{matrix} \\
\end{align}}\right.}}\]
Hence, we can write f(y) as
$f\left( y \right)=\left( y-2 \right)\left( 2{{y}^{2}}-y-21 \right)$
Now, we can factorize $2{{y}^{2}}-y-21$ by splitting the middle term. We can write –y as \[6y-7y\] as the sum is -1 and product is -21.
$\Rightarrow f\left( y \right)=\left( y-2 \right)\left( 2{{y}^{2}}+6y-7y-21 \right)$
Let us take the common factors outside.
$\Rightarrow f\left( y \right)=\left( y-2 \right)\left[ 2y\left( y+3 \right)-7\left( y+3 \right) \right]$
We can again take the common factors outside.
$\Rightarrow f\left( y \right)=\left( y-2 \right)\left( 2y-7 \right)\left( y+3 \right)$
Note: Students must know the long division method thoroughly to factorize the given polynomial. If \[f\left( -c \right)=0\] , then \[\left( y+c \right)\] is a factor of the polynomial f(y). If \[f\left( \dfrac{d}{c} \right)=\text{ }0\] then \[\left( cy-d \right)\] is a factor of the polynomial f(y). If \[f\left( -\dfrac{d}{c} \right)=\text{ }0\] , then \[\left( cy+d \right)\] is a factor of the polynomial f(y). . If \[f\left( c \right)=0\] , then \[\left( y-c \right)\] is a factor of the polynomial f(y). We can also use synthetic division instead of long division.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?

