Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

\[

  {\text{Using elementary transformation, find the inverse of the matrix}} \

  A = \left( {\begin{array}{*{20}{c}}

  a&b \ 

  c&{\dfrac{{1 + bc}}{a}} 

\end{array}} \right) \

  {\text{(a) }}{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}

  {\dfrac{{1 + bc}}{a}}&b \ 

  { - c}&a 

\end{array}} \right) \

  {\text{(b) }}{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}

  {\dfrac{{1 + bc}}{a}}&{ - b} \ 

  c&a 

\end{array}} \right) \

  {\text{(c) }}{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}

  {\dfrac{{1 + bc}}{a}}&b \ 

  c&a 

\end{array}} \right) \

  {\text{(d) None of these}} \ 

\]


Answer
VerifiedVerified
534.3k+ views
like imagedislike image
We know thatA=IAwhere I is the inverse matrix such thatI=(1001)(abc1+bca) = (1001)A
R1R1a(1bac1+bca) = (1a001)A
(1ba01+bcacba) = (1a0ca1)A(1ba01a) = (1a0ca1)A
We have to make 1a=1R2aR2(1ba01) = (1a0ca)AWe have to make ba=0R1R1baR2(1001) = (1aba(c)0baaca)A
As we know the identity,I=AA1A1=(1+bcabca)So,this is the required answer.

Note:To solve such kind of matrices we should know the identities first.With the use of identities we can solve these questions easily.