Answer
Verified
481.5k+ views
\[
{\text{We know that}} \\
A = IA \\
{\text{where }}I{\text{ is the inverse matrix such that}} \\
I = \left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right) \\
\left( {\begin{array}{*{20}{c}}
a&b \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right)A \\
\]
\[
{{\text{R}}_1} \to \dfrac{{{{\text{R}}_1}}}{a} \\
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\
0&1
\end{array}} \right)A \\
\]
\[
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\
0&{\dfrac{{1 + bc}}{a} - \dfrac{{cb}}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\
{\dfrac{{ - c}}{a}}&1
\end{array}} \right)A \\
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\
0&{\dfrac{1}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\
{\dfrac{{ - c}}{a}}&1
\end{array}} \right)A \\
\]
\[
{\text{We have to make }}\dfrac{1}{a} = 1 \\
{{\text{R}}_2} \to a{{\text{R}}_2} \\
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\
0&1
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\
{ - c}&a
\end{array}} \right)A \\
{\text{We have to make }}\dfrac{b}{a} = 0 \\
{{\text{R}}_1} \to {{\text{R}}_1} - \dfrac{b}{a}{{\text{R}}_2} \\
\left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a} - \dfrac{b}{a}( - c)}&{\dfrac{{0 - b}}{a}*a} \\
{ - c}&a
\end{array}} \right)A \\
\]
\[
{\text{As we know the identity,}} \\
I = A{A^{ - 1}} \\
{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&{ - b} \\
{ - c}&a
\end{array}} \right) \\
{\text{So,this is the required answer}}{\text{.}} \\
\]
\[
{\text{Note:To solve such kind of matrices we should know the identities first}}{\text{.}} \\
{\text{With the use of identities we can solve these questions easily}}{\text{.}} \\
\]
{\text{We know that}} \\
A = IA \\
{\text{where }}I{\text{ is the inverse matrix such that}} \\
I = \left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right) \\
\left( {\begin{array}{*{20}{c}}
a&b \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right)A \\
\]
\[
{{\text{R}}_1} \to \dfrac{{{{\text{R}}_1}}}{a} \\
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\
0&1
\end{array}} \right)A \\
\]
\[
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\
0&{\dfrac{{1 + bc}}{a} - \dfrac{{cb}}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\
{\dfrac{{ - c}}{a}}&1
\end{array}} \right)A \\
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\
0&{\dfrac{1}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\
{\dfrac{{ - c}}{a}}&1
\end{array}} \right)A \\
\]
\[
{\text{We have to make }}\dfrac{1}{a} = 1 \\
{{\text{R}}_2} \to a{{\text{R}}_2} \\
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\
0&1
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\
{ - c}&a
\end{array}} \right)A \\
{\text{We have to make }}\dfrac{b}{a} = 0 \\
{{\text{R}}_1} \to {{\text{R}}_1} - \dfrac{b}{a}{{\text{R}}_2} \\
\left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a} - \dfrac{b}{a}( - c)}&{\dfrac{{0 - b}}{a}*a} \\
{ - c}&a
\end{array}} \right)A \\
\]
\[
{\text{As we know the identity,}} \\
I = A{A^{ - 1}} \\
{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&{ - b} \\
{ - c}&a
\end{array}} \right) \\
{\text{So,this is the required answer}}{\text{.}} \\
\]
\[
{\text{Note:To solve such kind of matrices we should know the identities first}}{\text{.}} \\
{\text{With the use of identities we can solve these questions easily}}{\text{.}} \\
\]
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE