
\[
{\text{Using elementary transformation, find the inverse of the matrix}} \\
A = \left( {\begin{array}{*{20}{c}}
a&b \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right) \\
{\text{(a) }}{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&b \\
{ - c}&a
\end{array}} \right) \\
{\text{(b) }}{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&{ - b} \\
c&a
\end{array}} \right) \\
{\text{(c) }}{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&b \\
c&a
\end{array}} \right) \\
{\text{(d) None of these}} \\
\]
Answer
601.8k+ views
\[
{\text{We know that}} \\
A = IA \\
{\text{where }}I{\text{ is the inverse matrix such that}} \\
I = \left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right) \\
\left( {\begin{array}{*{20}{c}}
a&b \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right)A \\
\]
\[
{{\text{R}}_1} \to \dfrac{{{{\text{R}}_1}}}{a} \\
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\
0&1
\end{array}} \right)A \\
\]
\[
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\
0&{\dfrac{{1 + bc}}{a} - \dfrac{{cb}}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\
{\dfrac{{ - c}}{a}}&1
\end{array}} \right)A \\
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\
0&{\dfrac{1}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\
{\dfrac{{ - c}}{a}}&1
\end{array}} \right)A \\
\]
\[
{\text{We have to make }}\dfrac{1}{a} = 1 \\
{{\text{R}}_2} \to a{{\text{R}}_2} \\
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\
0&1
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\
{ - c}&a
\end{array}} \right)A \\
{\text{We have to make }}\dfrac{b}{a} = 0 \\
{{\text{R}}_1} \to {{\text{R}}_1} - \dfrac{b}{a}{{\text{R}}_2} \\
\left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a} - \dfrac{b}{a}( - c)}&{\dfrac{{0 - b}}{a}*a} \\
{ - c}&a
\end{array}} \right)A \\
\]
\[
{\text{As we know the identity,}} \\
I = A{A^{ - 1}} \\
{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&{ - b} \\
{ - c}&a
\end{array}} \right) \\
{\text{So,this is the required answer}}{\text{.}} \\
\]
\[
{\text{Note:To solve such kind of matrices we should know the identities first}}{\text{.}} \\
{\text{With the use of identities we can solve these questions easily}}{\text{.}} \\
\]
{\text{We know that}} \\
A = IA \\
{\text{where }}I{\text{ is the inverse matrix such that}} \\
I = \left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right) \\
\left( {\begin{array}{*{20}{c}}
a&b \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right)A \\
\]
\[
{{\text{R}}_1} \to \dfrac{{{{\text{R}}_1}}}{a} \\
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\
c&{\dfrac{{1 + bc}}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\
0&1
\end{array}} \right)A \\
\]
\[
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\
0&{\dfrac{{1 + bc}}{a} - \dfrac{{cb}}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\
{\dfrac{{ - c}}{a}}&1
\end{array}} \right)A \\
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\
0&{\dfrac{1}{a}}
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\
{\dfrac{{ - c}}{a}}&1
\end{array}} \right)A \\
\]
\[
{\text{We have to make }}\dfrac{1}{a} = 1 \\
{{\text{R}}_2} \to a{{\text{R}}_2} \\
\left( {\begin{array}{*{20}{c}}
1&{\dfrac{b}{a}} \\
0&1
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0 \\
{ - c}&a
\end{array}} \right)A \\
{\text{We have to make }}\dfrac{b}{a} = 0 \\
{{\text{R}}_1} \to {{\text{R}}_1} - \dfrac{b}{a}{{\text{R}}_2} \\
\left( {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right){\text{ = }}\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{a} - \dfrac{b}{a}( - c)}&{\dfrac{{0 - b}}{a}*a} \\
{ - c}&a
\end{array}} \right)A \\
\]
\[
{\text{As we know the identity,}} \\
I = A{A^{ - 1}} \\
{A^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{\dfrac{{1 + bc}}{a}}&{ - b} \\
{ - c}&a
\end{array}} \right) \\
{\text{So,this is the required answer}}{\text{.}} \\
\]
\[
{\text{Note:To solve such kind of matrices we should know the identities first}}{\text{.}} \\
{\text{With the use of identities we can solve these questions easily}}{\text{.}} \\
\]
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
What does the Hymn Ek ONKAR SATNAM KARTA PURAKH NIRBHAU class 12 social science CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

How will you obtain OR AND gates from the NAND and class 12 physics CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

Differentiate between exergonic and endergonic rea class 12 biology CBSE

Draw a ray diagram of compound microscope when the class 12 physics CBSE

