
Using determinant, show that the points \[A\left( {a,b + c} \right)\], \[B\left( {b,c + a} \right)\] and \[C\left( {c,a + b} \right)\] are collinear.
Answer
590.1k+ views
Hint: First, we will use the property that the three points \[\left( {{x_1},{y_1}} \right)\], \[\left( {{x_2},{y_2}} \right)\] and \[\left( {{x_3},{y_3}} \right)\] are collinear if \[\left| {\begin{array}{*{20}{c}}
1&{{x_1}}&{{y_1}} \\
1&{{x_2}}&{{y_2}} \\
1&{{x_3}}&{{y_3}}
\end{array}} \right| = 0\]. Then we will take \[{C_2} \to {C_2} + {C_3}\] and use the rule of determinant that if any of the two rows or columns, the determinant is equal to zero to prove the required result.
Complete step-by-step answer:
We are given that the points are \[A\left( {a,b + c} \right)\], \[B\left( {b,c + a} \right)\] and \[C\left( {c,a + b} \right)\].
We are given that the three points \[\left( {{x_1},{y_1}} \right)\], \[\left( {{x_2},{y_2}} \right)\] and \[\left( {{x_3},{y_3}} \right)\] are collinear if \[\left| {\begin{array}{*{20}{c}}
1&{{x_1}}&{{y_1}} \\
1&{{x_2}}&{{y_2}} \\
1&{{x_3}}&{{y_3}}
\end{array}} \right| = 0\].
So, we have the matrix from the three given point A, B and C, we get
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&a&{b + c} \\
1&b&{c + a} \\
1&c&{a + b}
\end{array}} \right|\]
Taking \[{C_2} \to {C_2} + {C_3}\] in the above equation, we get
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
1&{a + b + c}&{b + c} \\
1&{b + c + a}&{c + a} \\
1&{c + a + b}&{a + b}
\end{array}} \right| \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
1&{a + b + c}&{b + c} \\
1&{a + b + c}&{c + a} \\
1&{a + b + c}&{a + b}
\end{array}} \right| \\
\]
Taking \[a + b + c\] common from the second column of the above equation, we get
\[ \Rightarrow \left( {a + b + c} \right)\left| {\begin{array}{*{20}{c}}
1&1&{b + c} \\
1&1&{c + a} \\
1&1&{a + b}
\end{array}} \right|\]
Using the rule of determinant that if any of the two rows or columns, the determinant is equal to zero.
Since the first and second columns of the above matrix are the same, the determinant is 0.
Hence, the three points \[A\left( {a,b + c} \right)\], \[B\left( {b,c + a} \right)\] and \[C\left( {c,a + b} \right)\] are collinear.
Note: In these types of questions, the key concept is to know the basic properties of matrix and its determinant. This is a simple question once you know that the three points \[\left( {{x_1},{y_1}} \right)\], \[\left( {{x_2},{y_2}} \right)\] and \[\left( {{x_3},{y_3}} \right)\] are collinear if \[\left| {\begin{array}{*{20}{c}}
1&{{x_1}}&{{y_1}} \\
1&{{x_2}}&{{y_2}} \\
1&{{x_3}}&{{y_3}}
\end{array}} \right| = 0\].
1&{{x_1}}&{{y_1}} \\
1&{{x_2}}&{{y_2}} \\
1&{{x_3}}&{{y_3}}
\end{array}} \right| = 0\]. Then we will take \[{C_2} \to {C_2} + {C_3}\] and use the rule of determinant that if any of the two rows or columns, the determinant is equal to zero to prove the required result.
Complete step-by-step answer:
We are given that the points are \[A\left( {a,b + c} \right)\], \[B\left( {b,c + a} \right)\] and \[C\left( {c,a + b} \right)\].
We are given that the three points \[\left( {{x_1},{y_1}} \right)\], \[\left( {{x_2},{y_2}} \right)\] and \[\left( {{x_3},{y_3}} \right)\] are collinear if \[\left| {\begin{array}{*{20}{c}}
1&{{x_1}}&{{y_1}} \\
1&{{x_2}}&{{y_2}} \\
1&{{x_3}}&{{y_3}}
\end{array}} \right| = 0\].
So, we have the matrix from the three given point A, B and C, we get
\[ \Rightarrow \left| {\begin{array}{*{20}{c}}
1&a&{b + c} \\
1&b&{c + a} \\
1&c&{a + b}
\end{array}} \right|\]
Taking \[{C_2} \to {C_2} + {C_3}\] in the above equation, we get
\[
\Rightarrow \left| {\begin{array}{*{20}{c}}
1&{a + b + c}&{b + c} \\
1&{b + c + a}&{c + a} \\
1&{c + a + b}&{a + b}
\end{array}} \right| \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
1&{a + b + c}&{b + c} \\
1&{a + b + c}&{c + a} \\
1&{a + b + c}&{a + b}
\end{array}} \right| \\
\]
Taking \[a + b + c\] common from the second column of the above equation, we get
\[ \Rightarrow \left( {a + b + c} \right)\left| {\begin{array}{*{20}{c}}
1&1&{b + c} \\
1&1&{c + a} \\
1&1&{a + b}
\end{array}} \right|\]
Using the rule of determinant that if any of the two rows or columns, the determinant is equal to zero.
Since the first and second columns of the above matrix are the same, the determinant is 0.
Hence, the three points \[A\left( {a,b + c} \right)\], \[B\left( {b,c + a} \right)\] and \[C\left( {c,a + b} \right)\] are collinear.
Note: In these types of questions, the key concept is to know the basic properties of matrix and its determinant. This is a simple question once you know that the three points \[\left( {{x_1},{y_1}} \right)\], \[\left( {{x_2},{y_2}} \right)\] and \[\left( {{x_3},{y_3}} \right)\] are collinear if \[\left| {\begin{array}{*{20}{c}}
1&{{x_1}}&{{y_1}} \\
1&{{x_2}}&{{y_2}} \\
1&{{x_3}}&{{y_3}}
\end{array}} \right| = 0\].
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

