Courses
Courses for Kids
Free study material
Free LIVE classes
More

Using appropriate properties, find
$
  \left( i \right){\text{ }} - \dfrac{2}{3} \times \dfrac{3}{5} + \dfrac{5}{2} - \dfrac{3}{5} \times \dfrac{1}{6} \\
  \left( {ii} \right){\text{ }}\dfrac{2}{5} \times \left( { - \dfrac{3}{7}} \right) - \dfrac{1}{6} \times \dfrac{3}{2} + \dfrac{1}{{14}} \times \dfrac{2}{5} \\
$

Answer
VerifiedVerified
329.4k+ views
Hint: Try to find out common number and then proceed further with simple mathematics.

$
  \left( i \right){\text{ }} - \dfrac{2}{3} \times \dfrac{3}{5} + \dfrac{5}{2} - \dfrac{3}{5} \times \dfrac{1}{6} \\
   = - \dfrac{2}{3} \times \dfrac{3}{5} - \dfrac{3}{5} \times \dfrac{1}{6} + \dfrac{5}{2} \\
$
Taking $\dfrac{3}{5}$common, we get
$
   = \dfrac{3}{5}\left( { - \dfrac{2}{3} - \dfrac{1}{6}} \right) + \dfrac{5}{2} \\
   = \dfrac{3}{5}\left( {\dfrac{{ - 2 \times 2 - 1}}{6}} \right) + \dfrac{5}{2} \\
   = \dfrac{3}{5}\left( {\dfrac{{ - 5}}{6}} \right) + \dfrac{5}{2} \\
   = \dfrac{{ - 1}}{2} + \dfrac{5}{2} \\
   = \dfrac{4}{2} \\
   = 2 \\
$

$
  \left( {ii} \right){\text{ }}\dfrac{2}{5} \times \left( { - \dfrac{3}{7}} \right) - \dfrac{1}{6} \times \dfrac{3}{2} + \dfrac{1}{{14}} \times \dfrac{2}{5} \\
   = \dfrac{2}{5} \times \left( { - \dfrac{3}{7}} \right) + \dfrac{1}{{14}} \times \dfrac{2}{5} - \dfrac{1}{6} \times \dfrac{3}{2} \\
 $
Taking $\dfrac{2}{5}$common from above equation, we get
$
   = \dfrac{2}{5} \times \left( { - \dfrac{3}{7} + \dfrac{1}{{14}}} \right) - \dfrac{1}{6} \times \dfrac{3}{2} \\
   = \dfrac{2}{5} \times \left( {\dfrac{{ - 3 \times 2 + 1}}{{14}}} \right) - \dfrac{1}{6} \times \dfrac{3}{2} \\
   = \dfrac{2}{5} \times \left( {\dfrac{{ - 5}}{{14}}} \right) - \dfrac{1}{6} \times \dfrac{3}{2} \\
   = \dfrac{{ - 1}}{7} - \dfrac{1}{2} \times \dfrac{1}{2} \\
   = \dfrac{{ - 1}}{7} - \dfrac{1}{4} \\
   = \dfrac{{ - 4 - 7}}{{7 \times 4}} \\
   = \dfrac{{ - 11}}{{28}} \\
$

Note: Just follow the rules of BODMAS to get the correct answer. This means that you should do what is possible within parentheses first, then exponents, then multiplication and division (from left to right), and then addition and subtraction (from left to right).
Last updated date: 26th May 2023
•
Total views: 329.4k
•
Views today: 6.87k