Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Using appropriate properties, find
$
  \left( i \right){\text{ }} - \dfrac{2}{3} \times \dfrac{3}{5} + \dfrac{5}{2} - \dfrac{3}{5} \times \dfrac{1}{6} \\
  \left( {ii} \right){\text{ }}\dfrac{2}{5} \times \left( { - \dfrac{3}{7}} \right) - \dfrac{1}{6} \times \dfrac{3}{2} + \dfrac{1}{{14}} \times \dfrac{2}{5} \\
$

seo-qna
Last updated date: 15th Apr 2024
Total views: 424.8k
Views today: 10.24k
MVSAT 2024
Answer
VerifiedVerified
424.8k+ views
Hint: Try to find out common number and then proceed further with simple mathematics.

$
  \left( i \right){\text{ }} - \dfrac{2}{3} \times \dfrac{3}{5} + \dfrac{5}{2} - \dfrac{3}{5} \times \dfrac{1}{6} \\
   = - \dfrac{2}{3} \times \dfrac{3}{5} - \dfrac{3}{5} \times \dfrac{1}{6} + \dfrac{5}{2} \\
$
Taking $\dfrac{3}{5}$common, we get
$
   = \dfrac{3}{5}\left( { - \dfrac{2}{3} - \dfrac{1}{6}} \right) + \dfrac{5}{2} \\
   = \dfrac{3}{5}\left( {\dfrac{{ - 2 \times 2 - 1}}{6}} \right) + \dfrac{5}{2} \\
   = \dfrac{3}{5}\left( {\dfrac{{ - 5}}{6}} \right) + \dfrac{5}{2} \\
   = \dfrac{{ - 1}}{2} + \dfrac{5}{2} \\
   = \dfrac{4}{2} \\
   = 2 \\
$

$
  \left( {ii} \right){\text{ }}\dfrac{2}{5} \times \left( { - \dfrac{3}{7}} \right) - \dfrac{1}{6} \times \dfrac{3}{2} + \dfrac{1}{{14}} \times \dfrac{2}{5} \\
   = \dfrac{2}{5} \times \left( { - \dfrac{3}{7}} \right) + \dfrac{1}{{14}} \times \dfrac{2}{5} - \dfrac{1}{6} \times \dfrac{3}{2} \\
 $
Taking $\dfrac{2}{5}$common from above equation, we get
$
   = \dfrac{2}{5} \times \left( { - \dfrac{3}{7} + \dfrac{1}{{14}}} \right) - \dfrac{1}{6} \times \dfrac{3}{2} \\
   = \dfrac{2}{5} \times \left( {\dfrac{{ - 3 \times 2 + 1}}{{14}}} \right) - \dfrac{1}{6} \times \dfrac{3}{2} \\
   = \dfrac{2}{5} \times \left( {\dfrac{{ - 5}}{{14}}} \right) - \dfrac{1}{6} \times \dfrac{3}{2} \\
   = \dfrac{{ - 1}}{7} - \dfrac{1}{2} \times \dfrac{1}{2} \\
   = \dfrac{{ - 1}}{7} - \dfrac{1}{4} \\
   = \dfrac{{ - 4 - 7}}{{7 \times 4}} \\
   = \dfrac{{ - 11}}{{28}} \\
$

Note: Just follow the rules of BODMAS to get the correct answer. This means that you should do what is possible within parentheses first, then exponents, then multiplication and division (from left to right), and then addition and subtraction (from left to right).