
Using a protractor, draw an angle of measure \[72^\circ \]. With this angle as given, draw angles of measure \[36^\circ \] and \[54^\circ \].
Answer
573.3k+ views
Hint: Here, we will draw an angle ABC of \[72^\circ \] with the help of a protractor. Then with a center B and any radius, we will draw an arc, which intersect AB at D and BC at E and center D and E and radius more than \[\dfrac{{{\text{DE}}}}{2}\] and then draw two arcs which intersect each other at F. Then we will Join FB, which intersect the arc at G. So with centers D and G and radius more than \[\dfrac{{{\text{DE}}}}{2}\] and we will draw two arcs which intersect each other at F. Now with centers D and G and radius more than \[\dfrac{{{\text{DG}}}}{2}\] draw two arcs, which intersect each other at H and we will join HB to find the required angles.
Complete step-by-step answer:
First, we will draw an angle ABC of \[72^\circ \] with the help of a protractor.
Then with a center B and any radius, we will draw an arc, which intersects AB at D and BC at E.
With center D and E and radius more than \[\dfrac{{{\text{DE}}}}{2}\] and then draw two arcs which intersect each other at F.
Then we will Join FB, which intersects the arc at G.
So with centers D and G and radius more than \[\dfrac{{{\text{DE}}}}{2}\] and we will draw two arcs which intersect each other at F.
Now with centers D and G and radius more than \[\dfrac{{{\text{DG}}}}{2}\] draw two arcs which intersect each other at H.
Joining HB, we get
Therefore this implies that \[\angle HBC = 54^\circ \] and \[\angle FBC = 36^\circ \].
Note: The crucial part of this problem is to use the compass properly. One needs to know the basic rules and way of using a compass. We will verify our angle by using the protractor and putting it on the line BC with B as a center. This is a simple problem, we have to be careful with the labeling of the arcs as well.
Complete step-by-step answer:
First, we will draw an angle ABC of \[72^\circ \] with the help of a protractor.
Then with a center B and any radius, we will draw an arc, which intersects AB at D and BC at E.
With center D and E and radius more than \[\dfrac{{{\text{DE}}}}{2}\] and then draw two arcs which intersect each other at F.
Then we will Join FB, which intersects the arc at G.
So with centers D and G and radius more than \[\dfrac{{{\text{DE}}}}{2}\] and we will draw two arcs which intersect each other at F.
Now with centers D and G and radius more than \[\dfrac{{{\text{DG}}}}{2}\] draw two arcs which intersect each other at H.
Joining HB, we get
Therefore this implies that \[\angle HBC = 54^\circ \] and \[\angle FBC = 36^\circ \].
Note: The crucial part of this problem is to use the compass properly. One needs to know the basic rules and way of using a compass. We will verify our angle by using the protractor and putting it on the line BC with B as a center. This is a simple problem, we have to be careful with the labeling of the arcs as well.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Trending doubts
Convert 200 Million dollars in rupees class 7 maths CBSE

Bluebaby syndrome is caused by A Cadmium pollution class 7 biology CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

Differentiate between weather and climate How do they class 7 social science CBSE

Write a summary of the poem the quality of mercy by class 7 english CBSE

Write a letter to the editor of the national daily class 7 english CBSE


