
Use Venn diagrams to verify De’ Morgan’s law of complementation ${\left( {A \cup B} \right)^\prime } = \left( {A' \cap B'} \right)$
Answer
508.2k+ views
Hint: In this particular question use the concept that if set A has particular elements and set B has also some particular elements different from set A but some elements are same then in the set $\left( {A \cup B} \right)$ has all the elements containing set A and set B, common terms only written one time, in the set A’ there is no element which is in set A, so A’ is also called as a null set, so use these concepts to reach the solution of the question.
Complete step-by-step solution:
We have to verify using Venn diagrams De’ Morgan’s law of complementation i.e. ${\left( {A \cup B} \right)^\prime } = \left( {A' \cap B'} \right)$
I.e. complement of the union of the two sets is equal to the intersection of the complements of the respective set.
Now consider the LHS of the above equation we have,
$ \Rightarrow {\left( {A \cup B} \right)^\prime }$
Now as we know that if set A has particular elements and set B has also some particular elements different from set A but some elements are the same then in the set $\left( {A \cup B} \right)$ (i.e. A union B) has all the elements containing set A and set B, common terms only written one time, as shown in the Venn diagrams below.
Now ${\left( {A \cup B} \right)^\prime }$ is nothing but the complement of $\left( {A \cup B} \right)$ as shown in the Venn diagram below.
So ${\left( {A \cup B} \right)^\prime }$ is a null set i.e. a set which does not contain any elements.
Now consider the RHS of the above equation we have,
$ \Rightarrow \left( {A' \cap B'} \right)$
Now as we know that in set A’ there is no element of A as shown in the Venn diagram below similarly for the B’ or we can say that A’ and B’ is the complement of A and B respectively.
So A’ and B’ have no elements of A and B respectively.
So, $\left( {A' \cap B'} \right)$ has also no elements of A and B as shown below in the Venn diagrams.
So from the first and second Venn diagram, we can say that
LHS = RHS
Hence proved.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the following symbols which is given as,
$ \cup $ = union
$ \cap = $Intersection
$A'$ = complement of A
And the other De’ Morgan’s law is given as ${\left( {A \cap B} \right)^\prime } = \left( {A' \cup B'} \right)$
Complete step-by-step solution:
We have to verify using Venn diagrams De’ Morgan’s law of complementation i.e. ${\left( {A \cup B} \right)^\prime } = \left( {A' \cap B'} \right)$
I.e. complement of the union of the two sets is equal to the intersection of the complements of the respective set.
Now consider the LHS of the above equation we have,
$ \Rightarrow {\left( {A \cup B} \right)^\prime }$
Now as we know that if set A has particular elements and set B has also some particular elements different from set A but some elements are the same then in the set $\left( {A \cup B} \right)$ (i.e. A union B) has all the elements containing set A and set B, common terms only written one time, as shown in the Venn diagrams below.
Now ${\left( {A \cup B} \right)^\prime }$ is nothing but the complement of $\left( {A \cup B} \right)$ as shown in the Venn diagram below.

So ${\left( {A \cup B} \right)^\prime }$ is a null set i.e. a set which does not contain any elements.
Now consider the RHS of the above equation we have,
$ \Rightarrow \left( {A' \cap B'} \right)$
Now as we know that in set A’ there is no element of A as shown in the Venn diagram below similarly for the B’ or we can say that A’ and B’ is the complement of A and B respectively.
So A’ and B’ have no elements of A and B respectively.
So, $\left( {A' \cap B'} \right)$ has also no elements of A and B as shown below in the Venn diagrams.

So from the first and second Venn diagram, we can say that
LHS = RHS
Hence proved.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the following symbols which is given as,
$ \cup $ = union
$ \cap = $Intersection
$A'$ = complement of A
And the other De’ Morgan’s law is given as ${\left( {A \cap B} \right)^\prime } = \left( {A' \cup B'} \right)$
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
