
How do you use the quotient rule to differentiate \[\dfrac{\text{d}}{\text{dx}}\dfrac{\left( 2x + 1 \right)}{x^{2} – 1}\] ?
Answer
481.2k+ views
Hint: In this question, we need to find the differentiation of \[\dfrac{\text{d}}{\text{dx}}\dfrac{\left( 2x + 1 \right)}{x^{2} – 1}\] using quotient rule . Mathematically, a differentiation is defined as a rate of change of function with respect to an independent variable given in the function. Let us consider the given expression as \[y\] , the expression \[y\] is in the form of \[\dfrac{u}{v}\] . First we need to differentiate \[u\] and then \[v\] . Then we need to substitute the values in the quotient rule to find the differentiation of the given expression. With the help of quotient rules and derivative rules, we can easily find the differentiation of the given expression.
Quotient rule-
The quotient rule is nothing but a method used in finding the derivative of a function which is the ratio of two differentiable functions.
Let \[y = \dfrac{u}{v}\] , then the derivative of \[y\] is
\[\dfrac{\text{dy}}{\text{dx}} = \dfrac{\left( v\left( \dfrac{\text{du}}{\text{dx}} \right) – u\left( \dfrac{\text{dv}}{\text{dx}} \right) \right)}{v^{2}}\]
Complete step-by-step answer:
Given, \[\dfrac{\text{d}}{\text{dx}}\dfrac{2x + 1}{x^{2} – 1}\]
Let us assume that \[y = \dfrac{2x + 1}{x^{2} – 1}\] which is in the form of \[y = \dfrac{u}{v}\]
We can differentiate the given expression with the help of quotient rule.
\[\dfrac{\text{dy}}{\text{dx}} = \dfrac{\left( v\left( \dfrac{\text{du}}{\text{dx}} \right) – u\left( \dfrac{\text{dv}}{\text{dx}} \right) \right)}{v^{2}}\] ••• (1)
Let \[u = 2x + 1\] and \[v = x^{2} – 1\]
Now we can differentiate \[u\] with respect to \[x\] ,
\[\dfrac{\text{du}}{\text{dx}} = \dfrac{\text{d}}{\text{dx}}\left( 2x + 1 \right)\]
On differentiating,
We get,
\[\dfrac{\text{du}}{\text{dx}} = 2\]
Then we can differentiate \[v\] with respect to \[x\] ,
\[\dfrac{\text{dv}}{\text{dx}} = \dfrac{\text{d}}{\text{dx}}\left( x^{2} – 1 \right)\]
On differentiating,
We get,
\[\dfrac{\text{dv}}{\text{dx}} = 2x\]
By substituting the values in equation (1) ,
We get
\[\dfrac{\text{dy}}{\text{dx}} = \dfrac{\left( \left( x^{2} – 1 \right)\left( 2 \right)\left( 2x + 1 \right)\left( 2x \right) \right)}{\left( x^{2} – 1 \right)^{2}}\]
On simplifying,
We get,
\[\dfrac{\text{dy}}{\text{dx}} = \dfrac{\left( 2x^{2} – 2 \right) - \left( 4x^{2} + 2x \right)}{\left( x^{2} – 1 \right)^{2}}\]
\[\Rightarrow \dfrac{\text{dy}}{\text{dx}} = \dfrac{(2x^{2} – 2 – 4x^{2} – 2x)}{\left( x^{2} – 1 \right)^{2}}\]
On further simplifying,
We get,
\[\dfrac{\text{dy}}{\text{dx}} = \dfrac{\left( - 2x^{2} – 2x – 2 \right)}{\left( x^{2} – 1 \right)^{2}}\]
By taking \[- 2\] common from the numerator,
We get,
\[\dfrac{\text{dy}}{\text{dx}} = - \dfrac{2\left( x^{2} + x + 1 \right)}{\left( x^{2} – 1 \right)^{2}}\]
Thus we get the differentiation of \[\dfrac{\text{d}}{\text{dx}}\dfrac{\left( 2x + 1 \right)}{x^{2} – 1}\] is \[- \dfrac{2\left( x^{2} + x + 1 \right)}{\left( x^{2} – 1 \right)^{2}}\] .
Final answer :
The differentiation of \[\dfrac{\text{d}}{\text{dx}}\dfrac{\left( 2x + 1 \right)}{x^{2} – 1}\] is \[- \dfrac{2\left( x^{2} + x + 1 \right)}{\left( x^{2} – 1 \right)^{2}}\] .
Note: Mathematically , Differentiation helps in solving the problems in calculus and in differential equations. The derivative of \[y\] with respect to \[x\] is represented as \[\dfrac{\text{dy}}{\text{dx}}\] . Here the notation \[\dfrac{\text{dy}}{\text{dx}}\] is known as Leibniz's notation .A simple example for a differentiation is the differentiation of \[x^{3}\] is \[3x\] . Differentiation is applicable in trigonometric functions also . While opening the brackets make sure that we are opening the brackets properly with their respective signs.Also, while differentiating we should be careful in using the power rule \[\dfrac{d}{\text{dx}}\left( x^{n} \right) = nx^{n – 1}\] , a simple error that may happen while calculating.
Quotient rule-
The quotient rule is nothing but a method used in finding the derivative of a function which is the ratio of two differentiable functions.
Let \[y = \dfrac{u}{v}\] , then the derivative of \[y\] is
\[\dfrac{\text{dy}}{\text{dx}} = \dfrac{\left( v\left( \dfrac{\text{du}}{\text{dx}} \right) – u\left( \dfrac{\text{dv}}{\text{dx}} \right) \right)}{v^{2}}\]
Complete step-by-step answer:
Given, \[\dfrac{\text{d}}{\text{dx}}\dfrac{2x + 1}{x^{2} – 1}\]
Let us assume that \[y = \dfrac{2x + 1}{x^{2} – 1}\] which is in the form of \[y = \dfrac{u}{v}\]
We can differentiate the given expression with the help of quotient rule.
\[\dfrac{\text{dy}}{\text{dx}} = \dfrac{\left( v\left( \dfrac{\text{du}}{\text{dx}} \right) – u\left( \dfrac{\text{dv}}{\text{dx}} \right) \right)}{v^{2}}\] ••• (1)
Let \[u = 2x + 1\] and \[v = x^{2} – 1\]
Now we can differentiate \[u\] with respect to \[x\] ,
\[\dfrac{\text{du}}{\text{dx}} = \dfrac{\text{d}}{\text{dx}}\left( 2x + 1 \right)\]
On differentiating,
We get,
\[\dfrac{\text{du}}{\text{dx}} = 2\]
Then we can differentiate \[v\] with respect to \[x\] ,
\[\dfrac{\text{dv}}{\text{dx}} = \dfrac{\text{d}}{\text{dx}}\left( x^{2} – 1 \right)\]
On differentiating,
We get,
\[\dfrac{\text{dv}}{\text{dx}} = 2x\]
By substituting the values in equation (1) ,
We get
\[\dfrac{\text{dy}}{\text{dx}} = \dfrac{\left( \left( x^{2} – 1 \right)\left( 2 \right)\left( 2x + 1 \right)\left( 2x \right) \right)}{\left( x^{2} – 1 \right)^{2}}\]
On simplifying,
We get,
\[\dfrac{\text{dy}}{\text{dx}} = \dfrac{\left( 2x^{2} – 2 \right) - \left( 4x^{2} + 2x \right)}{\left( x^{2} – 1 \right)^{2}}\]
\[\Rightarrow \dfrac{\text{dy}}{\text{dx}} = \dfrac{(2x^{2} – 2 – 4x^{2} – 2x)}{\left( x^{2} – 1 \right)^{2}}\]
On further simplifying,
We get,
\[\dfrac{\text{dy}}{\text{dx}} = \dfrac{\left( - 2x^{2} – 2x – 2 \right)}{\left( x^{2} – 1 \right)^{2}}\]
By taking \[- 2\] common from the numerator,
We get,
\[\dfrac{\text{dy}}{\text{dx}} = - \dfrac{2\left( x^{2} + x + 1 \right)}{\left( x^{2} – 1 \right)^{2}}\]
Thus we get the differentiation of \[\dfrac{\text{d}}{\text{dx}}\dfrac{\left( 2x + 1 \right)}{x^{2} – 1}\] is \[- \dfrac{2\left( x^{2} + x + 1 \right)}{\left( x^{2} – 1 \right)^{2}}\] .
Final answer :
The differentiation of \[\dfrac{\text{d}}{\text{dx}}\dfrac{\left( 2x + 1 \right)}{x^{2} – 1}\] is \[- \dfrac{2\left( x^{2} + x + 1 \right)}{\left( x^{2} – 1 \right)^{2}}\] .
Note: Mathematically , Differentiation helps in solving the problems in calculus and in differential equations. The derivative of \[y\] with respect to \[x\] is represented as \[\dfrac{\text{dy}}{\text{dx}}\] . Here the notation \[\dfrac{\text{dy}}{\text{dx}}\] is known as Leibniz's notation .A simple example for a differentiation is the differentiation of \[x^{3}\] is \[3x\] . Differentiation is applicable in trigonometric functions also . While opening the brackets make sure that we are opening the brackets properly with their respective signs.Also, while differentiating we should be careful in using the power rule \[\dfrac{d}{\text{dx}}\left( x^{n} \right) = nx^{n – 1}\] , a simple error that may happen while calculating.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

