
How do you use the integral test to determine if $\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} $ is convergent or divergent?
Answer
558.9k+ views
Hint: To solve this question use the Integral Test to check given series is convergent or divergent.
According to the integral test We determine the convergence of $\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} $ by comparing it with
$\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx$. Then the series $\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} $ and the integral $\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx$ both converge or both diverge.
If the integral gives finite value then it converges otherwise it will diverge.
To solve the integral $\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx$, make substitution $u = \ln (\ln x)$.
Which gives the derivative of $u$ as $du = \dfrac{1}{{x\ln x}}dx$. Then change the limit integration of $u$ from $\ln (\ln 3)$ to $\infty $.
Solve the integration using formula $\int {\dfrac{1}{x}dx} = \ln x + C$ and remember $\mathop {\lim }\limits_{u \to \infty } \ln u \to \infty $.
Complete step-by-step answer:
Apply the integral test to find convergence of the series $\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} $.
The Integral Test: Suppose the sequence ${a_n} = f(n)$ is of positive terms, where $f$ is a continuous, positive decreasing function. Then the series $\sum\limits_{n = N}^\infty {{a_n}} $ , N is positive integer and the integral $\int\limits_N^\infty {f(x)} dx$ both converge or both diverge.
Consider the function $f(n) = \dfrac{1}{{n\ln n\ln (\ln n)}}$ so, $f(x) = \dfrac{1}{{x\ln x\ln (\ln x)}}$.
The function $f(x) = \dfrac{1}{{x\ln x\ln (\ln x)}}$is continuous, positive, and decreasing for $x \geqslant 3$ so we can apply the integral test to the series.
Now, we have to find$\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx$.
Here we use the substitution$u = \ln (\ln x)$.
Use the chain rule to find the derivative of $u = \ln (\ln x)$.
$\therefore $ $du = \dfrac{1}{{\ln x}}\dfrac{d}{{dx}}(\ln x)$
$ \Rightarrow du = \dfrac{1}{{\ln x}} \times \dfrac{1}{x}dx$
$ \Rightarrow du = \dfrac{1}{{x\ln x}}dx$
Apply the limits of $x$.
Put $x = 3$into $u$
$ \Rightarrow u = \ln (\ln 3)$
Put $x = \infty $into $u$
$ \Rightarrow u = \ln (\ln \infty )$
$ \Rightarrow u = \infty $($\because \ln \infty = \infty $ )
So the integral becomes,
$\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx = \int\limits_3^\infty {\dfrac{1}{{x\ln x}}} \times \dfrac{1}{{\ln (\ln x)}}dx$
$ \Rightarrow \int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx = \int\limits_{\ln (\ln 3)}^\infty {\dfrac{1}{u}} du$
Apply the formula of integration$\int {\dfrac{1}{x}dx} = \ln x + C$.
$ \Rightarrow \int\limits_{\ln (\ln 3)}^\infty {\dfrac{1}{u}} du = \left[ {\ln u} \right]_{\ln (\ln 3)}^\infty $
Here, as \[u\] approaches to $\infty $$\ln u$ also approaches to $\infty $that implies $\mathop {\lim }\limits_{u \to \infty } \ln u \to \infty $.
$\therefore \left[ {\ln u} \right]_{\ln (\ln 3)}^\infty = \infty - \ln (\ln (\ln 3))$
$\therefore \left[ {\ln u} \right]_{\ln (\ln 3)}^\infty = \infty $
So the integral $\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx$ does not have finite values hence $\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} $is divergent.
The series $\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} $ is divergent.
Note:
Students always forget to change the limit of integration whenever we substitute the value in the definite integral we have to find the limits for the substitution.
Integration of $\int {\dfrac{1}{x}dx} = \ln x + C$, don’t use power formulas to integrate.
The chain rule: If $f(t)$ and $g(t)$ are the function of $t$ then the derivative of its composite function is given by $\dfrac{d}{{dx}}[f(g(t)] = g'(t)f'(g(t))$
According to the integral test We determine the convergence of $\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} $ by comparing it with
$\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx$. Then the series $\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} $ and the integral $\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx$ both converge or both diverge.
If the integral gives finite value then it converges otherwise it will diverge.
To solve the integral $\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx$, make substitution $u = \ln (\ln x)$.
Which gives the derivative of $u$ as $du = \dfrac{1}{{x\ln x}}dx$. Then change the limit integration of $u$ from $\ln (\ln 3)$ to $\infty $.
Solve the integration using formula $\int {\dfrac{1}{x}dx} = \ln x + C$ and remember $\mathop {\lim }\limits_{u \to \infty } \ln u \to \infty $.
Complete step-by-step answer:
Apply the integral test to find convergence of the series $\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} $.
The Integral Test: Suppose the sequence ${a_n} = f(n)$ is of positive terms, where $f$ is a continuous, positive decreasing function. Then the series $\sum\limits_{n = N}^\infty {{a_n}} $ , N is positive integer and the integral $\int\limits_N^\infty {f(x)} dx$ both converge or both diverge.
Consider the function $f(n) = \dfrac{1}{{n\ln n\ln (\ln n)}}$ so, $f(x) = \dfrac{1}{{x\ln x\ln (\ln x)}}$.
The function $f(x) = \dfrac{1}{{x\ln x\ln (\ln x)}}$is continuous, positive, and decreasing for $x \geqslant 3$ so we can apply the integral test to the series.
Now, we have to find$\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx$.
Here we use the substitution$u = \ln (\ln x)$.
Use the chain rule to find the derivative of $u = \ln (\ln x)$.
$\therefore $ $du = \dfrac{1}{{\ln x}}\dfrac{d}{{dx}}(\ln x)$
$ \Rightarrow du = \dfrac{1}{{\ln x}} \times \dfrac{1}{x}dx$
$ \Rightarrow du = \dfrac{1}{{x\ln x}}dx$
Apply the limits of $x$.
Put $x = 3$into $u$
$ \Rightarrow u = \ln (\ln 3)$
Put $x = \infty $into $u$
$ \Rightarrow u = \ln (\ln \infty )$
$ \Rightarrow u = \infty $($\because \ln \infty = \infty $ )
So the integral becomes,
$\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx = \int\limits_3^\infty {\dfrac{1}{{x\ln x}}} \times \dfrac{1}{{\ln (\ln x)}}dx$
$ \Rightarrow \int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx = \int\limits_{\ln (\ln 3)}^\infty {\dfrac{1}{u}} du$
Apply the formula of integration$\int {\dfrac{1}{x}dx} = \ln x + C$.
$ \Rightarrow \int\limits_{\ln (\ln 3)}^\infty {\dfrac{1}{u}} du = \left[ {\ln u} \right]_{\ln (\ln 3)}^\infty $
Here, as \[u\] approaches to $\infty $$\ln u$ also approaches to $\infty $that implies $\mathop {\lim }\limits_{u \to \infty } \ln u \to \infty $.
$\therefore \left[ {\ln u} \right]_{\ln (\ln 3)}^\infty = \infty - \ln (\ln (\ln 3))$
$\therefore \left[ {\ln u} \right]_{\ln (\ln 3)}^\infty = \infty $
So the integral $\int\limits_3^\infty {\dfrac{1}{{x\ln x\ln (\ln x)}}} dx$ does not have finite values hence $\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} $is divergent.
The series $\sum\limits_{n = 3}^\infty {\dfrac{1}{{n\ln n\ln (\ln n)}}} $ is divergent.
Note:
Students always forget to change the limit of integration whenever we substitute the value in the definite integral we have to find the limits for the substitution.
Integration of $\int {\dfrac{1}{x}dx} = \ln x + C$, don’t use power formulas to integrate.
The chain rule: If $f(t)$ and $g(t)$ are the function of $t$ then the derivative of its composite function is given by $\dfrac{d}{{dx}}[f(g(t)] = g'(t)f'(g(t))$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

