
How do you use the half angle identity to find $ \sin {105^ \circ } $ ?
Answer
475.5k+ views
Hint: We use half angle formulae for sine function to find the value of the given trigonometric function. The formula or identities are universally true and holds good for any angle.
Use the half angle formula
$ \sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} $
Complete step by step solution:
In the case we want to find $ \sin \left( {{{105}^ \circ }} \right) $ so that’s what we want $ \sin \left( {\dfrac{\theta }{2}} \right) $ to equal .
To find what our $ \theta $ is , set these to equal to each other.
$ \sin \left( {{{105}^ \circ }} \right) = \sin \left( {\dfrac{\theta }{2}} \right) $
$ \Rightarrow {105^ \circ } = \dfrac{\theta }{2} $
$ \Rightarrow {210^ \circ } = \theta $
This is our $ \theta $ . Now, we can use the half angle formula.
$ \sin \left( {{{105}^ \circ }} \right) $
$ = \sin \left( {{{\dfrac{{210}}{2}}^ \circ }} \right) $
$ = \pm \sqrt {\dfrac{{1 - \cos \left( {{{210}^ \circ }} \right)}}{2}} $
$ = \pm \sqrt {\dfrac{{1 + \dfrac{{\sqrt 3 }}{2}}}{2}} $
$ = \pm \sqrt {\dfrac{{1 + \sqrt 3 }}{4}} $
$ = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{{\sqrt 4 }} $
$ = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $ $ $
Since $ {105^ \circ } $ is in the second quadrant, we know that in the second quadrant $ \sin \theta $ be positive.
Therefore,
$ \sin {105^ \circ } = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $
So, the correct answer is “Option $ \sin {105^ \circ } = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $ ”.
Note: We will take a negative answer when $ \theta $ lies in $ {3^{rd}} $ or $ {4^{th}} $ quadrant. The abbreviation for 'all sin cos tan' rule in trigonometry is ASTC . It can be memorized as "All Students Take Calculus". The first letter of the first word in this phrase is 'A'. This may be taken to indicate that all trigonometric ratios in the first quadrant are positive .
Use the half angle formula
$ \sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} $
Complete step by step solution:
In the case we want to find $ \sin \left( {{{105}^ \circ }} \right) $ so that’s what we want $ \sin \left( {\dfrac{\theta }{2}} \right) $ to equal .
To find what our $ \theta $ is , set these to equal to each other.
$ \sin \left( {{{105}^ \circ }} \right) = \sin \left( {\dfrac{\theta }{2}} \right) $
$ \Rightarrow {105^ \circ } = \dfrac{\theta }{2} $
$ \Rightarrow {210^ \circ } = \theta $
This is our $ \theta $ . Now, we can use the half angle formula.
$ \sin \left( {{{105}^ \circ }} \right) $
$ = \sin \left( {{{\dfrac{{210}}{2}}^ \circ }} \right) $
$ = \pm \sqrt {\dfrac{{1 - \cos \left( {{{210}^ \circ }} \right)}}{2}} $
$ = \pm \sqrt {\dfrac{{1 + \dfrac{{\sqrt 3 }}{2}}}{2}} $
$ = \pm \sqrt {\dfrac{{1 + \sqrt 3 }}{4}} $
$ = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{{\sqrt 4 }} $
$ = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $ $ $
Since $ {105^ \circ } $ is in the second quadrant, we know that in the second quadrant $ \sin \theta $ be positive.
Therefore,
$ \sin {105^ \circ } = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $
So, the correct answer is “Option $ \sin {105^ \circ } = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $ ”.
Note: We will take a negative answer when $ \theta $ lies in $ {3^{rd}} $ or $ {4^{th}} $ quadrant. The abbreviation for 'all sin cos tan' rule in trigonometry is ASTC . It can be memorized as "All Students Take Calculus". The first letter of the first word in this phrase is 'A'. This may be taken to indicate that all trigonometric ratios in the first quadrant are positive .
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE
