
How do you use the half angle identity to find $ \sin {105^ \circ } $ ?
Answer
537.6k+ views
Hint: We use half angle formulae for sine function to find the value of the given trigonometric function. The formula or identities are universally true and holds good for any angle.
Use the half angle formula
$ \sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} $
Complete step by step solution:
In the case we want to find $ \sin \left( {{{105}^ \circ }} \right) $ so that’s what we want $ \sin \left( {\dfrac{\theta }{2}} \right) $ to equal .
To find what our $ \theta $ is , set these to equal to each other.
$ \sin \left( {{{105}^ \circ }} \right) = \sin \left( {\dfrac{\theta }{2}} \right) $
$ \Rightarrow {105^ \circ } = \dfrac{\theta }{2} $
$ \Rightarrow {210^ \circ } = \theta $
This is our $ \theta $ . Now, we can use the half angle formula.
$ \sin \left( {{{105}^ \circ }} \right) $
$ = \sin \left( {{{\dfrac{{210}}{2}}^ \circ }} \right) $
$ = \pm \sqrt {\dfrac{{1 - \cos \left( {{{210}^ \circ }} \right)}}{2}} $
$ = \pm \sqrt {\dfrac{{1 + \dfrac{{\sqrt 3 }}{2}}}{2}} $
$ = \pm \sqrt {\dfrac{{1 + \sqrt 3 }}{4}} $
$ = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{{\sqrt 4 }} $
$ = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $ $ $
Since $ {105^ \circ } $ is in the second quadrant, we know that in the second quadrant $ \sin \theta $ be positive.
Therefore,
$ \sin {105^ \circ } = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $
So, the correct answer is “Option $ \sin {105^ \circ } = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $ ”.
Note: We will take a negative answer when $ \theta $ lies in $ {3^{rd}} $ or $ {4^{th}} $ quadrant. The abbreviation for 'all sin cos tan' rule in trigonometry is ASTC . It can be memorized as "All Students Take Calculus". The first letter of the first word in this phrase is 'A'. This may be taken to indicate that all trigonometric ratios in the first quadrant are positive .
Use the half angle formula
$ \sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} $
Complete step by step solution:
In the case we want to find $ \sin \left( {{{105}^ \circ }} \right) $ so that’s what we want $ \sin \left( {\dfrac{\theta }{2}} \right) $ to equal .
To find what our $ \theta $ is , set these to equal to each other.
$ \sin \left( {{{105}^ \circ }} \right) = \sin \left( {\dfrac{\theta }{2}} \right) $
$ \Rightarrow {105^ \circ } = \dfrac{\theta }{2} $
$ \Rightarrow {210^ \circ } = \theta $
This is our $ \theta $ . Now, we can use the half angle formula.
$ \sin \left( {{{105}^ \circ }} \right) $
$ = \sin \left( {{{\dfrac{{210}}{2}}^ \circ }} \right) $
$ = \pm \sqrt {\dfrac{{1 - \cos \left( {{{210}^ \circ }} \right)}}{2}} $
$ = \pm \sqrt {\dfrac{{1 + \dfrac{{\sqrt 3 }}{2}}}{2}} $
$ = \pm \sqrt {\dfrac{{1 + \sqrt 3 }}{4}} $
$ = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{{\sqrt 4 }} $
$ = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $ $ $
Since $ {105^ \circ } $ is in the second quadrant, we know that in the second quadrant $ \sin \theta $ be positive.
Therefore,
$ \sin {105^ \circ } = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $
So, the correct answer is “Option $ \sin {105^ \circ } = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $ ”.
Note: We will take a negative answer when $ \theta $ lies in $ {3^{rd}} $ or $ {4^{th}} $ quadrant. The abbreviation for 'all sin cos tan' rule in trigonometry is ASTC . It can be memorized as "All Students Take Calculus". The first letter of the first word in this phrase is 'A'. This may be taken to indicate that all trigonometric ratios in the first quadrant are positive .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

