
How do you use the half angle identity to find $ \sin {105^ \circ } $ ?
Answer
523.2k+ views
Hint: We use half angle formulae for sine function to find the value of the given trigonometric function. The formula or identities are universally true and holds good for any angle.
Use the half angle formula
$ \sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} $
Complete step by step solution:
In the case we want to find $ \sin \left( {{{105}^ \circ }} \right) $ so that’s what we want $ \sin \left( {\dfrac{\theta }{2}} \right) $ to equal .
To find what our $ \theta $ is , set these to equal to each other.
$ \sin \left( {{{105}^ \circ }} \right) = \sin \left( {\dfrac{\theta }{2}} \right) $
$ \Rightarrow {105^ \circ } = \dfrac{\theta }{2} $
$ \Rightarrow {210^ \circ } = \theta $
This is our $ \theta $ . Now, we can use the half angle formula.
$ \sin \left( {{{105}^ \circ }} \right) $
$ = \sin \left( {{{\dfrac{{210}}{2}}^ \circ }} \right) $
$ = \pm \sqrt {\dfrac{{1 - \cos \left( {{{210}^ \circ }} \right)}}{2}} $
$ = \pm \sqrt {\dfrac{{1 + \dfrac{{\sqrt 3 }}{2}}}{2}} $
$ = \pm \sqrt {\dfrac{{1 + \sqrt 3 }}{4}} $
$ = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{{\sqrt 4 }} $
$ = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $ $ $
Since $ {105^ \circ } $ is in the second quadrant, we know that in the second quadrant $ \sin \theta $ be positive.
Therefore,
$ \sin {105^ \circ } = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $
So, the correct answer is “Option $ \sin {105^ \circ } = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $ ”.
Note: We will take a negative answer when $ \theta $ lies in $ {3^{rd}} $ or $ {4^{th}} $ quadrant. The abbreviation for 'all sin cos tan' rule in trigonometry is ASTC . It can be memorized as "All Students Take Calculus". The first letter of the first word in this phrase is 'A'. This may be taken to indicate that all trigonometric ratios in the first quadrant are positive .
Use the half angle formula
$ \sin \left( {\dfrac{\theta }{2}} \right) = \pm \sqrt {\dfrac{{1 - \cos \theta }}{2}} $
Complete step by step solution:
In the case we want to find $ \sin \left( {{{105}^ \circ }} \right) $ so that’s what we want $ \sin \left( {\dfrac{\theta }{2}} \right) $ to equal .
To find what our $ \theta $ is , set these to equal to each other.
$ \sin \left( {{{105}^ \circ }} \right) = \sin \left( {\dfrac{\theta }{2}} \right) $
$ \Rightarrow {105^ \circ } = \dfrac{\theta }{2} $
$ \Rightarrow {210^ \circ } = \theta $
This is our $ \theta $ . Now, we can use the half angle formula.
$ \sin \left( {{{105}^ \circ }} \right) $
$ = \sin \left( {{{\dfrac{{210}}{2}}^ \circ }} \right) $
$ = \pm \sqrt {\dfrac{{1 - \cos \left( {{{210}^ \circ }} \right)}}{2}} $
$ = \pm \sqrt {\dfrac{{1 + \dfrac{{\sqrt 3 }}{2}}}{2}} $
$ = \pm \sqrt {\dfrac{{1 + \sqrt 3 }}{4}} $
$ = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{{\sqrt 4 }} $
$ = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $ $ $
Since $ {105^ \circ } $ is in the second quadrant, we know that in the second quadrant $ \sin \theta $ be positive.
Therefore,
$ \sin {105^ \circ } = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $
So, the correct answer is “Option $ \sin {105^ \circ } = \pm \dfrac{{\sqrt {2 + \sqrt 3 } }}{2} $ ”.
Note: We will take a negative answer when $ \theta $ lies in $ {3^{rd}} $ or $ {4^{th}} $ quadrant. The abbreviation for 'all sin cos tan' rule in trigonometry is ASTC . It can be memorized as "All Students Take Calculus". The first letter of the first word in this phrase is 'A'. This may be taken to indicate that all trigonometric ratios in the first quadrant are positive .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

