
Use the given algebraic expression to complete the table of number patterns.
S. No. Expression Terms 1st 2nd 3rd 4th 5th …. 10th … 100th … i \[2n - 1\] 1 3 5 7 9 - 19 - - - ii \[3n + 2\] 5 8 11 14 - - - - - - iii \[4n + 1\] 5 9 1 17 - - - - - - iv \[7n + 20\] 27 34 41 48 - - - - - - v \[{n^2} + 1\] 2 5 10 17 - - - - 10001 -
S. No. | Expression | Terms | |||||||||
1st | 2nd | 3rd | 4th | 5th | …. | 10th | … | 100th | … | ||
i | \[2n - 1\] | 1 | 3 | 5 | 7 | 9 | - | 19 | - | - | - |
ii | \[3n + 2\] | 5 | 8 | 11 | 14 | - | - | - | - | - | - |
iii | \[4n + 1\] | 5 | 9 | 1 | 17 | - | - | - | - | - | - |
iv | \[7n + 20\] | 27 | 34 | 41 | 48 | - | - | - | - | - | - |
v | \[{n^2} + 1\] | 2 | 5 | 10 | 17 | - | - | - | - | 10001 | - |
Answer
523.8k+ views
Hint: Substitute the term number in the given expression to find the values of the algebraic expression. Where algebraic expression is an expression built up from integer constants, variables and operators, we can derive the algebraic expression for a given condition by using +, -, ×, ÷.
Complete step-by-step answer:
Let the terms be n,
i.In the expression\[2n - 1\]
For the 100th term, n=100
\[
= 2n - 1 \\
= \left( {2 \times 100} \right) - 1 \\
= 200 - 1 \\
= 199 \\
\]
ii.In the expression \[3n + 2\]
When n=5
\[
= 3n + 2 \\
= \left( {3 \times 5} \right) + 2 \\
= 15 + 2 \\
= 17 \\
\]
When n=10
\[
= 3n + 2 \\
= \left( {3 \times 10} \right) + 2 \\
= 30 + 2 \\
= 32 \\
\]
When n=100
\[
= 3n + 2 \\
= \left( {3 \times 100} \right) + 2 \\
= 300 + 2 \\
= 302 \\
\]
iii.In the expression \[4n + 1\]
When n=5
\[
= 4n + 1 \\
= \left( {4 \times 5} \right) + 1 \\
= 20 + 1 \\
= 21 \\
\]
When n=10
\[
= 4n + 1 \\
= \left( {4 \times 10} \right) + 1 \\
= 40 + 1 \\
= 41 \\
\]
When n=100
\[
= 4n + 1 \\
= \left( {4 \times 100} \right) + 1 \\
= 400 + 1 \\
= 401 \\
\]
In the expression \[7n + 20\]
When n=5
\[
= 7n + 20 \\
iv. = \left( {7 \times 5} \right) + 20 \\
= 35 + 20 \\
= 55 \\
\]
When n=10
\[
= 7n + 20 \\
= \left( {7 \times 10} \right) + 20 \\
= 70 + 20 \\
= 90 \\
\]
When n=100
\[
= 7n + 20 \\
= \left( {7 \times 100} \right) + 20 \\
= 700 + 20 \\
= 720 \\
\]
v.In the expression \[{n^2} + 1\]
When n=5
\[
= {n^2} + 1 \\
= {5^2} + 1 \\
= 25 + 1 \\
= 26 \\
\]
When n=10
\[
= {n^2} + 1 \\
= {10^2} + 1 \\
= 100 + 1 \\
= 101 \\
\]
Now put all the value of the expression for n in the given table
Note: Students should be careful while filling the data in the table. Each data should be filled only corresponding to the row and column only. Be careful and take all n values required as per the question.
Complete step-by-step answer:
Let the terms be n,
i.In the expression\[2n - 1\]
For the 100th term, n=100
\[
= 2n - 1 \\
= \left( {2 \times 100} \right) - 1 \\
= 200 - 1 \\
= 199 \\
\]
ii.In the expression \[3n + 2\]
When n=5
\[
= 3n + 2 \\
= \left( {3 \times 5} \right) + 2 \\
= 15 + 2 \\
= 17 \\
\]
When n=10
\[
= 3n + 2 \\
= \left( {3 \times 10} \right) + 2 \\
= 30 + 2 \\
= 32 \\
\]
When n=100
\[
= 3n + 2 \\
= \left( {3 \times 100} \right) + 2 \\
= 300 + 2 \\
= 302 \\
\]
iii.In the expression \[4n + 1\]
When n=5
\[
= 4n + 1 \\
= \left( {4 \times 5} \right) + 1 \\
= 20 + 1 \\
= 21 \\
\]
When n=10
\[
= 4n + 1 \\
= \left( {4 \times 10} \right) + 1 \\
= 40 + 1 \\
= 41 \\
\]
When n=100
\[
= 4n + 1 \\
= \left( {4 \times 100} \right) + 1 \\
= 400 + 1 \\
= 401 \\
\]
In the expression \[7n + 20\]
When n=5
\[
= 7n + 20 \\
iv. = \left( {7 \times 5} \right) + 20 \\
= 35 + 20 \\
= 55 \\
\]
When n=10
\[
= 7n + 20 \\
= \left( {7 \times 10} \right) + 20 \\
= 70 + 20 \\
= 90 \\
\]
When n=100
\[
= 7n + 20 \\
= \left( {7 \times 100} \right) + 20 \\
= 700 + 20 \\
= 720 \\
\]
v.In the expression \[{n^2} + 1\]
When n=5
\[
= {n^2} + 1 \\
= {5^2} + 1 \\
= 25 + 1 \\
= 26 \\
\]
When n=10
\[
= {n^2} + 1 \\
= {10^2} + 1 \\
= 100 + 1 \\
= 101 \\
\]
Now put all the value of the expression for n in the given table
S. No. | Expression | Terms | |||||||||
1st | 2nd | 3rd | 4th | 5th | …. | 10th | … | 100th | … | ||
i | \[2n - 1\] | 1 | 3 | 5 | 7 | 9 | - | 19 | - | 199 | - |
ii | \[3n + 2\] | 5 | 8 | 11 | 14 | 17 | - | 32 | - | 302 | - |
iii | \[4n + 1\] | 5 | 9 | 1 | 17 | 21 | - | 41 | - | 401 | - |
iv | \[7n + 20\] | 27 | 34 | 41 | 48 | 55 | - | 90 | - | 720 | - |
v | \[{n^2} + 1\] | 2 | 5 | 10 | 17 | 26 | - | 101 | - | 10001 | - |
Note: Students should be careful while filling the data in the table. Each data should be filled only corresponding to the row and column only. Be careful and take all n values required as per the question.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
List some examples of Rabi and Kharif crops class 8 biology CBSE

How many ounces are in 500 mL class 8 maths CBSE

How many ten lakhs are in one crore-class-8-maths-CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE

What is BLO What is the full form of BLO class 8 social science CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
