
Use the first principle of differentiation to differentiate $y = \sqrt {\sin x} $.
Answer
474.9k+ views
Hint: The given question requires us to find the derivative of a function using the first principle of differentiation. The first principle of differentiation helps us evaluate the derivative of a function using limits. Calculating the derivative of a function using the first principle of differentiation may be a tedious task. We may employ identities and tricks to calculate the limits and evaluate the required derivative.
Complete step by step solution:
We have to evaluate the derivative of $y =f(x) = \sqrt {\sin x} $ using the first principle of differentiation.
According to the first principle of differentiation, the derivative of a function can be evaluated by calculating the limit \[f'\left( x \right){\text{ = }}\mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f{\text{(x)}}}}{h}\] .
So, the derivative of the function $y = \sqrt {\sin x} $ can be calculated by the first rule of differentiation as:
$f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin \left( {x + h} \right)} - \sqrt {\sin x} }}{h}} \right]$
Expanding the sine of a compound angle using the compound angle formula for sine as $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin x\cosh + \cos x\sinh } - \sqrt {\sin x} }}{h}} \right]$
Multiplying and dividing the rational expression by $\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin x\cosh + \cos x\sinh } - \sqrt {\sin x} }}{h}} \right] \times \dfrac{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}$
Using the algebraic identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin x\cosh + \cos x\sinh - \sin x}}{{h\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Taking the common terms outside the bracket, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin x\left( {\cosh - 1} \right) + \cos x\sinh }}{{h\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Separating out the denominator, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\dfrac{{\sin x\left( {\cosh - 1} \right)}}{h} + \dfrac{{\cos x\sinh }}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Using the half angle formula for cosine in numerator,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\dfrac{{\sin x\left( {1 - 2{{\sin }^2}\dfrac{h}{2} - 1} \right)}}{h} + \dfrac{{\cos x\sinh }}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Cancelling the like terms with opposite signs,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h} + \cos x\left( {\dfrac{{\sinh }}{h}} \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Separating out the limits for each expression, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( {\dfrac{{\sinh }}{h}} \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Using the standard limit result $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Doing some modifications in the first term,
\[ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{{\dfrac{4}{h} \times {{\left( {\dfrac{h}{2}} \right)}^2}}}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]\]
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x \times \dfrac{h}{4}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2h\sin x}}{{4\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Putting in the value of limits, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\dfrac{{ - 2\left( 0 \right)\sin x}}{{4\left( {\sqrt {\sin x\cos 0 + \cos x\sin 0} + \sqrt {\sin x} } \right)}} + \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\cos 0 + \cos x\sin 0} + \sqrt {\sin x} } \right)}}} \right]$
Simplifying the expression,
$ \Rightarrow f'(x){\text{ = }}\left[ {0 + \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\left( 1 \right) + \cos x\left( 0 \right)} + \sqrt {\sin x} } \right)}}} \right]$
$ \Rightarrow f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$
Therefore, the derivative of the function $y = \sqrt {\sin x} $ is $f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$.
Note:
The derivative of the given function can also be calculated by using the chain rule and power rule of differentiation. According to the power rule of differentiation, the derivative of ${x^n}$ is $n{x^{n - 1}}$ .
So, going by the chain rule of differentiation, the derivative of $y = \sqrt {\sin x} $ is $\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt {\sin x} }} \times \left( {\cos x} \right)$. So, the derivative of the given function is $f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$ .
Complete step by step solution:
We have to evaluate the derivative of $y =f(x) = \sqrt {\sin x} $ using the first principle of differentiation.
According to the first principle of differentiation, the derivative of a function can be evaluated by calculating the limit \[f'\left( x \right){\text{ = }}\mathop {\lim }\limits_{h \to 0} \dfrac{{f(x + h) - f{\text{(x)}}}}{h}\] .
So, the derivative of the function $y = \sqrt {\sin x} $ can be calculated by the first rule of differentiation as:
$f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin \left( {x + h} \right)} - \sqrt {\sin x} }}{h}} \right]$
Expanding the sine of a compound angle using the compound angle formula for sine as $\sin \left( {A + B} \right) = \sin A\cos B + \cos A\sin B$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin x\cosh + \cos x\sinh } - \sqrt {\sin x} }}{h}} \right]$
Multiplying and dividing the rational expression by $\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sqrt {\sin x\cosh + \cos x\sinh } - \sqrt {\sin x} }}{h}} \right] \times \dfrac{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}$
Using the algebraic identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin x\cosh + \cos x\sinh - \sin x}}{{h\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Taking the common terms outside the bracket, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\sin x\left( {\cosh - 1} \right) + \cos x\sinh }}{{h\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Separating out the denominator, we get,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\dfrac{{\sin x\left( {\cosh - 1} \right)}}{h} + \dfrac{{\cos x\sinh }}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Using the half angle formula for cosine in numerator,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{\dfrac{{\sin x\left( {1 - 2{{\sin }^2}\dfrac{h}{2} - 1} \right)}}{h} + \dfrac{{\cos x\sinh }}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Cancelling the like terms with opposite signs,
$ \Rightarrow f'(x){\text{ = }}\mathop {\lim }\limits_{h \to 0} \left[ {\dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h} + \cos x\left( {\dfrac{{\sinh }}{h}} \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Separating out the limits for each expression, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( {\dfrac{{\sinh }}{h}} \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Using the standard limit result $\mathop {\lim }\limits_{x \to 0} \dfrac{{\sin x}}{x} = 1$, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{h}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Doing some modifications in the first term,
\[ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x\dfrac{{\left( {{{\sin }^2}\dfrac{h}{2}} \right)}}{{\dfrac{4}{h} \times {{\left( {\dfrac{h}{2}} \right)}^2}}}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]\]
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2\sin x \times \dfrac{h}{4}}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x\left( 1 \right)}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
$ \Rightarrow f'(x){\text{ = }}\left[ {\mathop {\lim }\limits_{h \to 0} \dfrac{{ - 2h\sin x}}{{4\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}} + \mathop {\lim }\limits_{h \to 0} \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\cosh + \cos x\sinh } + \sqrt {\sin x} } \right)}}} \right]$
Putting in the value of limits, we get,
$ \Rightarrow f'(x){\text{ = }}\left[ {\dfrac{{ - 2\left( 0 \right)\sin x}}{{4\left( {\sqrt {\sin x\cos 0 + \cos x\sin 0} + \sqrt {\sin x} } \right)}} + \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\cos 0 + \cos x\sin 0} + \sqrt {\sin x} } \right)}}} \right]$
Simplifying the expression,
$ \Rightarrow f'(x){\text{ = }}\left[ {0 + \dfrac{{\cos x}}{{\left( {\sqrt {\sin x\left( 1 \right) + \cos x\left( 0 \right)} + \sqrt {\sin x} } \right)}}} \right]$
$ \Rightarrow f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$
Therefore, the derivative of the function $y = \sqrt {\sin x} $ is $f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$.
Note:
The derivative of the given function can also be calculated by using the chain rule and power rule of differentiation. According to the power rule of differentiation, the derivative of ${x^n}$ is $n{x^{n - 1}}$ .
So, going by the chain rule of differentiation, the derivative of $y = \sqrt {\sin x} $ is $\dfrac{{dy}}{{dx}} = \dfrac{1}{{2\sqrt {\sin x} }} \times \left( {\cos x} \right)$. So, the derivative of the given function is $f'(x){\text{ = }}\dfrac{{\cos x}}{{2\sqrt {\sin x} }}$ .
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

