
How do you use the double angle or half angle formula to simplify $2\sin 35{}^\circ \cos 35{}^\circ $.
Answer
544.5k+ views
Hint: To solve the above question we will use the concept of trigonometric identities. We will use the formula $\sin 2\theta =2\sin \theta \cos \theta $ and $2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)$ to solve the above question. When we use the formula $\sin 2\theta =2\sin \theta \cos \theta $, then $\theta =35{}^\circ $ which we get after comparing from equation $2\sin 35{}^\circ \cos 35{}^\circ $. So, we can write the above equation as $\sin \left( 2\times 35{}^\circ \right)=2\sin 35{}^\circ \cos 35{}^\circ $
$\Rightarrow \sin \left( 2\times 35{}^\circ \right)=2\sin 35{}^\circ \cos 35{}^\circ $
$\Rightarrow 2\sin 35{}^\circ \cos 35{}^\circ =\sin 70{}^\circ $
Complete step-by-step solution:
We will use the concept of the trigonometric identities to solve the above question. We will use the formula $\sin 2\theta =2\sin \theta \cos \theta $ and $2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)$ to solve the above question.
We will compare $2\sin \theta \cos \theta $ with the $2\sin 35{}^\circ \cos 35{}^\circ $, then we will get $\theta =35{}^\circ $.
Since, we know that $\sin 2\theta =2\sin \theta \cos \theta $, so when we put $\theta =35{}^\circ $, we will get:
$\Rightarrow \sin 2\theta =2\sin \theta \cos \theta $
So, when $\theta =35{}^\circ $ we will get:
$\Rightarrow \sin 2\times 35{}^\circ =2\sin 35{}^\circ \cos 35{}^\circ $
$\Rightarrow 2\sin 35{}^\circ \cos 35{}^\circ =\sin 70{}^\circ $
So, we can say that the simplified form of $2\sin 35{}^\circ \cos 35{}^\circ $is equal to $\sin 70{}^\circ $.
Now, we can also solve the above question alternatively using the formula $2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)$.
When we compare $2\sin 35{}^\circ \cos 35{}^\circ $with $2\sin A\cos B$, then we will get:
$A=35{}^\circ ,B=35{}^\circ $
Now, we know that $2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)$. So, after putting the value of A and B in the above equation we will get:
$\Rightarrow 2\sin 35{}^\circ \cos 35{}^\circ =\sin \left( 35{}^\circ +35{}^\circ \right)+\sin \left( 35{}^\circ -35{}^\circ \right)$
Now, after simplifying we will get:
$\Rightarrow 2\sin 35{}^\circ \cos 35{}^\circ =\sin 70{}^\circ +\sin 0{}^\circ $
Now, we know that value of $\sin 0{}^\circ =0$.
So, the value of $2\sin 35{}^\circ \cos 35{}^\circ =\sin 70{}^\circ +0$
$\Rightarrow 2\sin 35{}^\circ \cos 35{}^\circ =\sin 70{}^\circ $
This is our required solution.
Note: Students are required to note that when they are solving trigonometry questions then they must revise and first memorize the trigonometric formulas otherwise they will not be able to solve the question especially when they have to prove or simplify any trigonometric expression.
$\Rightarrow \sin \left( 2\times 35{}^\circ \right)=2\sin 35{}^\circ \cos 35{}^\circ $
$\Rightarrow 2\sin 35{}^\circ \cos 35{}^\circ =\sin 70{}^\circ $
Complete step-by-step solution:
We will use the concept of the trigonometric identities to solve the above question. We will use the formula $\sin 2\theta =2\sin \theta \cos \theta $ and $2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)$ to solve the above question.
We will compare $2\sin \theta \cos \theta $ with the $2\sin 35{}^\circ \cos 35{}^\circ $, then we will get $\theta =35{}^\circ $.
Since, we know that $\sin 2\theta =2\sin \theta \cos \theta $, so when we put $\theta =35{}^\circ $, we will get:
$\Rightarrow \sin 2\theta =2\sin \theta \cos \theta $
So, when $\theta =35{}^\circ $ we will get:
$\Rightarrow \sin 2\times 35{}^\circ =2\sin 35{}^\circ \cos 35{}^\circ $
$\Rightarrow 2\sin 35{}^\circ \cos 35{}^\circ =\sin 70{}^\circ $
So, we can say that the simplified form of $2\sin 35{}^\circ \cos 35{}^\circ $is equal to $\sin 70{}^\circ $.
Now, we can also solve the above question alternatively using the formula $2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)$.
When we compare $2\sin 35{}^\circ \cos 35{}^\circ $with $2\sin A\cos B$, then we will get:
$A=35{}^\circ ,B=35{}^\circ $
Now, we know that $2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)$. So, after putting the value of A and B in the above equation we will get:
$\Rightarrow 2\sin 35{}^\circ \cos 35{}^\circ =\sin \left( 35{}^\circ +35{}^\circ \right)+\sin \left( 35{}^\circ -35{}^\circ \right)$
Now, after simplifying we will get:
$\Rightarrow 2\sin 35{}^\circ \cos 35{}^\circ =\sin 70{}^\circ +\sin 0{}^\circ $
Now, we know that value of $\sin 0{}^\circ =0$.
So, the value of $2\sin 35{}^\circ \cos 35{}^\circ =\sin 70{}^\circ +0$
$\Rightarrow 2\sin 35{}^\circ \cos 35{}^\circ =\sin 70{}^\circ $
This is our required solution.
Note: Students are required to note that when they are solving trigonometry questions then they must revise and first memorize the trigonometric formulas otherwise they will not be able to solve the question especially when they have to prove or simplify any trigonometric expression.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

