
How do you use the definition of a derivative to show that if $ f\left( x \right)=\dfrac{1}{x} $ then $ f'\left( x \right)=-\dfrac{1}{{{x}^{2}}} $ ?
Answer
462.6k+ views
Hint: start the solution with $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part of the definition of derivative without considering the $ \displaystyle \lim_{h \to 0} $ . Then find f(x+h) from f(x) given in the question. Put the values of f(x+h) and f(x) in the definition and simplify it. Once it is simplified then proceed with the $ f'\left( x \right) $ part and put the value of h=0 when required.
Complete step by step answer:
Definition of derivative: We know the derivative of $ f\left( x \right) $ is the function $ f'\left( x \right) $ and is defined as $ f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h} $
For the proof given in the question, let’s begin with the $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part first.
We have $ f\left( x \right)=\dfrac{1}{x} $
Then $ f\left( x+h \right)=\dfrac{1}{x+h} $
So,
$ \begin{align}
& \dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\
& =\dfrac{\left( \dfrac{1}{x+h}-\dfrac{1}{x} \right)}{h} \\
\end{align} $
Taking L.C.M. of the numerator, we get
$ \begin{align}
& \text{=}\dfrac{\left( \dfrac{1\cdot x-1.\left( x+h \right)}{x\left( x+h \right)} \right)}{h} \\
& \text{=}\dfrac{\left( \dfrac{x-x-h}{x\left( x+h \right)} \right)}{h} \\
& \text{=}\dfrac{\left( \dfrac{-h}{x\left( x+h \right)} \right)}{h} \\
& \text{=}\dfrac{-h}{x\left( x+h \right)}\times \dfrac{1}{h} \\
\end{align} $
After ‘h’ got cancel out from numerator and denominator, we get
$ \text{=}-\dfrac{1}{x\left( x+h \right)} $
Now, Let’s come back to $ f'\left( x \right) $ part.
$ f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h} $
Since we got $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h}\text{=}-\dfrac{1}{x\left( x+h \right)} $
So by replacing the value of $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ above, we get
$ f'\left( x \right)\text{=}\displaystyle \lim_{h \to 0}-\dfrac{1}{x\left( x+h \right)} $
Here we can replace the value of h=0 as ‘h’ tends to 0
$ \begin{align}
& \Rightarrow f'\left( x \right)\text{=}-\dfrac{1}{x\left( x+0 \right)} \\
& \Rightarrow f'\left( x \right)\text{=}-\dfrac{1}{x\cdot x} \\
& \Rightarrow f'\left( x \right)\text{=}-\dfrac{1}{{{x}^{2}}} \\
\end{align} $
Hence Proved.
Note:
The solution should start with $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part and not with $ f'\left( x \right) $ part because if we start with the $ f'\left( x \right) $ part there is a ‘h’ in denominator and since $ h \to 0 $ , $ f'\left( x \right) $ will be infinity. Hence we will not get any solutions. So it’s advised to proceed with the $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part first. Else we may proceed directly with the $ f'\left( x \right) $ part by not putting the value of ‘h’ till the $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part not get simplified. The ideal way is to solve by taking parts to avoid confusion.
Complete step by step answer:
Definition of derivative: We know the derivative of $ f\left( x \right) $ is the function $ f'\left( x \right) $ and is defined as $ f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h} $
For the proof given in the question, let’s begin with the $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part first.
We have $ f\left( x \right)=\dfrac{1}{x} $
Then $ f\left( x+h \right)=\dfrac{1}{x+h} $
So,
$ \begin{align}
& \dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\
& =\dfrac{\left( \dfrac{1}{x+h}-\dfrac{1}{x} \right)}{h} \\
\end{align} $
Taking L.C.M. of the numerator, we get
$ \begin{align}
& \text{=}\dfrac{\left( \dfrac{1\cdot x-1.\left( x+h \right)}{x\left( x+h \right)} \right)}{h} \\
& \text{=}\dfrac{\left( \dfrac{x-x-h}{x\left( x+h \right)} \right)}{h} \\
& \text{=}\dfrac{\left( \dfrac{-h}{x\left( x+h \right)} \right)}{h} \\
& \text{=}\dfrac{-h}{x\left( x+h \right)}\times \dfrac{1}{h} \\
\end{align} $
After ‘h’ got cancel out from numerator and denominator, we get
$ \text{=}-\dfrac{1}{x\left( x+h \right)} $
Now, Let’s come back to $ f'\left( x \right) $ part.
$ f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h} $
Since we got $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h}\text{=}-\dfrac{1}{x\left( x+h \right)} $
So by replacing the value of $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ above, we get
$ f'\left( x \right)\text{=}\displaystyle \lim_{h \to 0}-\dfrac{1}{x\left( x+h \right)} $
Here we can replace the value of h=0 as ‘h’ tends to 0
$ \begin{align}
& \Rightarrow f'\left( x \right)\text{=}-\dfrac{1}{x\left( x+0 \right)} \\
& \Rightarrow f'\left( x \right)\text{=}-\dfrac{1}{x\cdot x} \\
& \Rightarrow f'\left( x \right)\text{=}-\dfrac{1}{{{x}^{2}}} \\
\end{align} $
Hence Proved.
Note:
The solution should start with $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part and not with $ f'\left( x \right) $ part because if we start with the $ f'\left( x \right) $ part there is a ‘h’ in denominator and since $ h \to 0 $ , $ f'\left( x \right) $ will be infinity. Hence we will not get any solutions. So it’s advised to proceed with the $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part first. Else we may proceed directly with the $ f'\left( x \right) $ part by not putting the value of ‘h’ till the $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part not get simplified. The ideal way is to solve by taking parts to avoid confusion.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
