
How do you use the definition of a derivative to show that if $ f\left( x \right)=\dfrac{1}{x} $ then $ f'\left( x \right)=-\dfrac{1}{{{x}^{2}}} $ ?
Answer
546.3k+ views
Hint: start the solution with $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part of the definition of derivative without considering the $ \displaystyle \lim_{h \to 0} $ . Then find f(x+h) from f(x) given in the question. Put the values of f(x+h) and f(x) in the definition and simplify it. Once it is simplified then proceed with the $ f'\left( x \right) $ part and put the value of h=0 when required.
Complete step by step answer:
Definition of derivative: We know the derivative of $ f\left( x \right) $ is the function $ f'\left( x \right) $ and is defined as $ f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h} $
For the proof given in the question, let’s begin with the $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part first.
We have $ f\left( x \right)=\dfrac{1}{x} $
Then $ f\left( x+h \right)=\dfrac{1}{x+h} $
So,
$ \begin{align}
& \dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\
& =\dfrac{\left( \dfrac{1}{x+h}-\dfrac{1}{x} \right)}{h} \\
\end{align} $
Taking L.C.M. of the numerator, we get
$ \begin{align}
& \text{=}\dfrac{\left( \dfrac{1\cdot x-1.\left( x+h \right)}{x\left( x+h \right)} \right)}{h} \\
& \text{=}\dfrac{\left( \dfrac{x-x-h}{x\left( x+h \right)} \right)}{h} \\
& \text{=}\dfrac{\left( \dfrac{-h}{x\left( x+h \right)} \right)}{h} \\
& \text{=}\dfrac{-h}{x\left( x+h \right)}\times \dfrac{1}{h} \\
\end{align} $
After ‘h’ got cancel out from numerator and denominator, we get
$ \text{=}-\dfrac{1}{x\left( x+h \right)} $
Now, Let’s come back to $ f'\left( x \right) $ part.
$ f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h} $
Since we got $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h}\text{=}-\dfrac{1}{x\left( x+h \right)} $
So by replacing the value of $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ above, we get
$ f'\left( x \right)\text{=}\displaystyle \lim_{h \to 0}-\dfrac{1}{x\left( x+h \right)} $
Here we can replace the value of h=0 as ‘h’ tends to 0
$ \begin{align}
& \Rightarrow f'\left( x \right)\text{=}-\dfrac{1}{x\left( x+0 \right)} \\
& \Rightarrow f'\left( x \right)\text{=}-\dfrac{1}{x\cdot x} \\
& \Rightarrow f'\left( x \right)\text{=}-\dfrac{1}{{{x}^{2}}} \\
\end{align} $
Hence Proved.
Note:
The solution should start with $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part and not with $ f'\left( x \right) $ part because if we start with the $ f'\left( x \right) $ part there is a ‘h’ in denominator and since $ h \to 0 $ , $ f'\left( x \right) $ will be infinity. Hence we will not get any solutions. So it’s advised to proceed with the $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part first. Else we may proceed directly with the $ f'\left( x \right) $ part by not putting the value of ‘h’ till the $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part not get simplified. The ideal way is to solve by taking parts to avoid confusion.
Complete step by step answer:
Definition of derivative: We know the derivative of $ f\left( x \right) $ is the function $ f'\left( x \right) $ and is defined as $ f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h} $
For the proof given in the question, let’s begin with the $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part first.
We have $ f\left( x \right)=\dfrac{1}{x} $
Then $ f\left( x+h \right)=\dfrac{1}{x+h} $
So,
$ \begin{align}
& \dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\
& =\dfrac{\left( \dfrac{1}{x+h}-\dfrac{1}{x} \right)}{h} \\
\end{align} $
Taking L.C.M. of the numerator, we get
$ \begin{align}
& \text{=}\dfrac{\left( \dfrac{1\cdot x-1.\left( x+h \right)}{x\left( x+h \right)} \right)}{h} \\
& \text{=}\dfrac{\left( \dfrac{x-x-h}{x\left( x+h \right)} \right)}{h} \\
& \text{=}\dfrac{\left( \dfrac{-h}{x\left( x+h \right)} \right)}{h} \\
& \text{=}\dfrac{-h}{x\left( x+h \right)}\times \dfrac{1}{h} \\
\end{align} $
After ‘h’ got cancel out from numerator and denominator, we get
$ \text{=}-\dfrac{1}{x\left( x+h \right)} $
Now, Let’s come back to $ f'\left( x \right) $ part.
$ f'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h} $
Since we got $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h}\text{=}-\dfrac{1}{x\left( x+h \right)} $
So by replacing the value of $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ above, we get
$ f'\left( x \right)\text{=}\displaystyle \lim_{h \to 0}-\dfrac{1}{x\left( x+h \right)} $
Here we can replace the value of h=0 as ‘h’ tends to 0
$ \begin{align}
& \Rightarrow f'\left( x \right)\text{=}-\dfrac{1}{x\left( x+0 \right)} \\
& \Rightarrow f'\left( x \right)\text{=}-\dfrac{1}{x\cdot x} \\
& \Rightarrow f'\left( x \right)\text{=}-\dfrac{1}{{{x}^{2}}} \\
\end{align} $
Hence Proved.
Note:
The solution should start with $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part and not with $ f'\left( x \right) $ part because if we start with the $ f'\left( x \right) $ part there is a ‘h’ in denominator and since $ h \to 0 $ , $ f'\left( x \right) $ will be infinity. Hence we will not get any solutions. So it’s advised to proceed with the $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part first. Else we may proceed directly with the $ f'\left( x \right) $ part by not putting the value of ‘h’ till the $ \dfrac{f\left( x+h \right)-f\left( x \right)}{h} $ part not get simplified. The ideal way is to solve by taking parts to avoid confusion.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

