
How do you use the binomial theorem to expand \[{\left( {1 - x} \right)^{ - \dfrac{1}{2}}}\] ?
Answer
514.8k+ views
Hint: The given question requires us to find the binomial expansion of the given binomial expression \[{\left( {1 - x} \right)^{ - \dfrac{1}{2}}}\] . We can find the required binomial expansion by using the Binomial theorem. Binomial theorem helps us to expand the powers of binomial expressions easily and can be used to solve the given problem. We must know the formulae of combinations and factorials for solving the given question using the binomial theorem.
Complete step-by-step answer:
We have to find the binomial expansion of \[{\left( {1 - x} \right)^{ - \dfrac{1}{2}}}\] . So, using the binomial theorem, the binomial expansion of \[{\left( {1 + x} \right)^n}\] is $1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)}}{{4!}}{x^4} + ....$
So, the binomial expansion of \[{\left( {1 - x} \right)^{ - \dfrac{1}{2}}}\] can be calculated by the above expression by substituting in the correct value of n and x.
Now, we compare the expression \[{\left( {1 - x} \right)^{ - \dfrac{1}{2}}}\] with \[{\left( {1 + x} \right)^n}\] . So, we get the value of n as $\left( { - \dfrac{1}{2}} \right)$ and $ - x$ in place of $x$.
So, we have, \[ = 1 + \left( { - \dfrac{1}{2}} \right)\left( { - x} \right) + \dfrac{{\left( { - \dfrac{1}{2}} \right)\left( {\left( { - \dfrac{1}{2}} \right) - 1} \right)}}{{2!}}{\left( { - x} \right)^2} + \dfrac{{\left( { - \dfrac{1}{2}} \right)\left( {\left( { - \dfrac{1}{2}} \right) - 1} \right)\left( {\left( { - \dfrac{1}{2}} \right) - 2} \right)}}{{3!}}{\left( { - x} \right)^3} + \dfrac{{\left( { - \dfrac{1}{2}} \right)\left( {\left( { - \dfrac{1}{2}} \right) - 1} \right)\left( {\left( { - \dfrac{1}{2}} \right) - 2} \right)\left( {\left( { - \dfrac{1}{2}} \right) - 3} \right)}}{{4!}}{\left( { - x} \right)^4} + ....\]
So, simplifying the expression further, we get,
\[ = 1 + \left( { - \dfrac{1}{2}} \right)\left( { - x} \right) + \dfrac{{\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)}}{{2!}}{\left( { - x} \right)^2} + \dfrac{{\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)\left( { - \dfrac{5}{2}} \right)}}{{3!}}{\left( { - x} \right)^3} + \dfrac{{\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)\left( { - \dfrac{5}{2}} \right)\left( { - \dfrac{7}{2}} \right)}}{{4!}}{\left( { - x} \right)^4} + ....\]
So, we can evaluate first few terms of the binomial expansion,
\[ = 1 + \dfrac{1}{2}x + \dfrac{{\left( {\dfrac{3}{4}} \right)}}{2}{x^2} + \dfrac{{\left( {\dfrac{{ - 15}}{8}} \right)}}{6}\left( { - {x^3}} \right) + \dfrac{{\left( {\dfrac{{105}}{{16}}} \right)}}{{24}}{x^4} + ....\]
Simplifying the expression and opening the brackets, we get,
\[ = 1 + \dfrac{1}{2}x + \dfrac{3}{8}{x^2} + \dfrac{5}{{16}}{x^3} + \dfrac{{35}}{{128}}{x^4} + ....\]
Hence, the expression \[{\left( {1 - x} \right)^{ - \dfrac{1}{2}}}\] can be simplified as \[\left( {1 + \dfrac{1}{2}x + \dfrac{3}{8}{x^2} + \dfrac{5}{{16}}{x^3} + \dfrac{{35}}{{128}}{x^4} + ....} \right)\] using binomial theorem.
So, the correct answer is “ \[\left( {1 + \dfrac{1}{2}x + \dfrac{3}{8}{x^2} + \dfrac{5}{{16}}{x^3} + \dfrac{{35}}{{128}}{x^4} + ....} \right)\] ”.
Note: The given problem can be solved by various methods. The easiest way is to apply the concepts of Binomial theorem as it is very effective in finding the binomial expansion. One should be careful while carrying out the calculations and simplification.
Complete step-by-step answer:
We have to find the binomial expansion of \[{\left( {1 - x} \right)^{ - \dfrac{1}{2}}}\] . So, using the binomial theorem, the binomial expansion of \[{\left( {1 + x} \right)^n}\] is $1 + nx + \dfrac{{n\left( {n - 1} \right)}}{{2!}}{x^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}{x^3} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)}}{{4!}}{x^4} + ....$
So, the binomial expansion of \[{\left( {1 - x} \right)^{ - \dfrac{1}{2}}}\] can be calculated by the above expression by substituting in the correct value of n and x.
Now, we compare the expression \[{\left( {1 - x} \right)^{ - \dfrac{1}{2}}}\] with \[{\left( {1 + x} \right)^n}\] . So, we get the value of n as $\left( { - \dfrac{1}{2}} \right)$ and $ - x$ in place of $x$.
So, we have, \[ = 1 + \left( { - \dfrac{1}{2}} \right)\left( { - x} \right) + \dfrac{{\left( { - \dfrac{1}{2}} \right)\left( {\left( { - \dfrac{1}{2}} \right) - 1} \right)}}{{2!}}{\left( { - x} \right)^2} + \dfrac{{\left( { - \dfrac{1}{2}} \right)\left( {\left( { - \dfrac{1}{2}} \right) - 1} \right)\left( {\left( { - \dfrac{1}{2}} \right) - 2} \right)}}{{3!}}{\left( { - x} \right)^3} + \dfrac{{\left( { - \dfrac{1}{2}} \right)\left( {\left( { - \dfrac{1}{2}} \right) - 1} \right)\left( {\left( { - \dfrac{1}{2}} \right) - 2} \right)\left( {\left( { - \dfrac{1}{2}} \right) - 3} \right)}}{{4!}}{\left( { - x} \right)^4} + ....\]
So, simplifying the expression further, we get,
\[ = 1 + \left( { - \dfrac{1}{2}} \right)\left( { - x} \right) + \dfrac{{\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)}}{{2!}}{\left( { - x} \right)^2} + \dfrac{{\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)\left( { - \dfrac{5}{2}} \right)}}{{3!}}{\left( { - x} \right)^3} + \dfrac{{\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right)\left( { - \dfrac{5}{2}} \right)\left( { - \dfrac{7}{2}} \right)}}{{4!}}{\left( { - x} \right)^4} + ....\]
So, we can evaluate first few terms of the binomial expansion,
\[ = 1 + \dfrac{1}{2}x + \dfrac{{\left( {\dfrac{3}{4}} \right)}}{2}{x^2} + \dfrac{{\left( {\dfrac{{ - 15}}{8}} \right)}}{6}\left( { - {x^3}} \right) + \dfrac{{\left( {\dfrac{{105}}{{16}}} \right)}}{{24}}{x^4} + ....\]
Simplifying the expression and opening the brackets, we get,
\[ = 1 + \dfrac{1}{2}x + \dfrac{3}{8}{x^2} + \dfrac{5}{{16}}{x^3} + \dfrac{{35}}{{128}}{x^4} + ....\]
Hence, the expression \[{\left( {1 - x} \right)^{ - \dfrac{1}{2}}}\] can be simplified as \[\left( {1 + \dfrac{1}{2}x + \dfrac{3}{8}{x^2} + \dfrac{5}{{16}}{x^3} + \dfrac{{35}}{{128}}{x^4} + ....} \right)\] using binomial theorem.
So, the correct answer is “ \[\left( {1 + \dfrac{1}{2}x + \dfrac{3}{8}{x^2} + \dfrac{5}{{16}}{x^3} + \dfrac{{35}}{{128}}{x^4} + ....} \right)\] ”.
Note: The given problem can be solved by various methods. The easiest way is to apply the concepts of Binomial theorem as it is very effective in finding the binomial expansion. One should be careful while carrying out the calculations and simplification.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

