
How do you use the Binomial Theorem to expand ${{\left( 5x+2y \right)}^{6}}$ ?
Answer
441.3k+ views
Hint: To expand ${{\left( 5x+2y \right)}^{6}}$ , we will use Binomial Theorem which states that ${{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}}$ , where $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$ . By using this theorem, we can write ${{\left( 5x+2y \right)}^{6}}=\sum\limits_{r=0}^{6}{^{6}{{C}_{r}}{{\left( 5x \right)}^{6-r}}{{\left( 2y \right)}^{r}}}$ . First, we have to expand the summation and then apply $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$ . On further simplification, we will get the required answer.
Complete step-by-step solution:
We need to expand ${{\left( 5x+2y \right)}^{6}}$ using Binomial Theorem. Let us see what Binomial Theorem is. Binomial Theorem states that
${{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}}...(i)$ , where $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$
We are given that ${{\left( 5x+2y \right)}^{6}}$ . When we compare this with the Binomial Theorem, we can see that $a=5x,b=2y,n=6$ . Now, let us substitute these values in (i). We will get
${{\left( 5x+2y \right)}^{6}}=\sum\limits_{r=0}^{6}{^{6}{{C}_{r}}{{\left( 5x \right)}^{6-r}}{{\left( 2y \right)}^{r}}}$
Let us expand this.
\[{{\left( 5x+2y \right)}^{6}}{{=}^{6}}{{C}_{0}}{{\left( 5x \right)}^{6-0}}{{\left( 2y \right)}^{0}}{{+}^{6}}{{C}_{1}}{{\left( 5x \right)}^{6-1}}{{\left( 2y \right)}^{1}}{{+}^{6}}{{C}_{2}}{{\left( 5x \right)}^{6-2}}{{\left( 2y \right)}^{2}}{{+}^{6}}{{C}_{3}}{{\left( 5x \right)}^{6-3}}{{\left( 2y \right)}^{3}}{{+}^{6}}{{C}_{4}}{{\left( 5x \right)}^{6-4}}{{\left( 2y \right)}^{4}}{{+}^{6}}{{C}_{5}}{{\left( 5x \right)}^{6-5}}{{\left( 2y \right)}^{5}}{{+}^{6}}{{C}_{6}}{{\left( 5x \right)}^{6-6}}{{\left( 2y \right)}^{6}}\]
Let us simplify this further.
\[{{\left( 5x+2y \right)}^{6}}{{=}^{6}}{{C}_{0}}{{\left( 5x \right)}^{6}}{{+}^{6}}{{C}_{1}}{{\left( 5x \right)}^{5}}2y{{+}^{6}}{{C}_{2}}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}{{+}^{6}}{{C}_{3}}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}{{+}^{6}}{{C}_{4}}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}{{+}^{6}}{{C}_{5}}5x{{\left( 2y \right)}^{5}}{{+}^{6}}{{C}_{6}}{{\left( 5x \right)}^{0}}{{\left( 2y \right)}^{6}}\]We know that $^{n}{{C}_{0}}=1{{,}^{n}}{{C}_{1}}=n$ and $^{n}{{C}_{n}}=1$ . Let us use these values in the above expansion.
\[{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y{{+}^{6}}{{C}_{2}}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}{{+}^{6}}{{C}_{3}}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}{{+}^{6}}{{C}_{4}}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}{{+}^{6}}{{C}_{5}}5x{{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}\]
We know that $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$ . Therefore, we can simplify the above expansion as follows.
\[{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+\dfrac{6!}{\left( 6-2 \right)!2!}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+\dfrac{6!}{\left( 6-3 \right)!3!}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+\dfrac{6!}{\left( 6-4 \right)!4!}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+\dfrac{6!}{\left( 6-5 \right)!5!}\left( 5x \right){{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}\]
Let us simplify the above form further.
\[{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+\dfrac{6!}{4!2!}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+\dfrac{6!}{3!3!}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+\dfrac{6!}{2!4!}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+\dfrac{6!}{1!5!}\left( 5x \right){{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}\]
We know that \[n!=n\times \left( n-1 \right)\times \left( n-2 \right)...\times 1\] . Also we can represent any factorial as \[n!=n\times \left( n-1 \right)!\] . Let us solve the above expansion.
\[{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+\dfrac{6\times 5\times 4!}{4!2!}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+\dfrac{6\times 5\times 4\times 3!}{3!3!}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+\dfrac{6\times 5\times 4!}{2!4!}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+\dfrac{6\times 5!}{1!5!}\left( 5x \right){{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}\]
Let us cancel the common terms from numerator and denominator.
\[{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+\dfrac{6\times 5}{2!}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+\dfrac{6\times 5\times 4}{3!}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+\dfrac{6\times 5}{2!}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+\dfrac{6}{1!}\left( 5x \right){{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}\]
Now, let us expand the factorial. We will get
\[{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+\dfrac{6\times 5}{2\times 1}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+\dfrac{6\times 5\times 4}{3\times 2\times 1}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+\dfrac{6\times 5}{2\times 1}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+\dfrac{6}{1}\times 5x{{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}\]
We can now cancel the common terms from numerator and denominator.
\[{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+3\times 5\times {{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+2\times 5\times 2{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+3\times 5\times {{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+6\times 5x{{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}\]
On solving the above expansion, we will get
\[{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+15{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+20{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+15{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+30x{{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}\]Let us expand the powers.
\[\begin{align}
& {{\left( 5x+2y \right)}^{6}}=15625{{x}^{6}}+6\times 3125{{x}^{5}}2y+15\times 625{{x}^{4}}4{{y}^{2}}+20\times 125{{x}^{3}}8{{y}^{3}}+15\times 25{{x}^{2}}16{{y}^{4}}+30x32{{y}^{5}}+64{{y}^{6}} \\
& \Rightarrow {{\left( 5x+2y \right)}^{6}}=15625{{x}^{6}}+37500{{x}^{5}}y+37500{{x}^{4}}{{y}^{2}}+20000{{x}^{3}}{{y}^{3}}+6000{{x}^{2}}{{y}^{4}}+960x{{y}^{5}}+64{{y}^{6}} \\
\end{align}\]
Hence, the expansion of ${{\left( 5x+2y \right)}^{6}}$ is \[15625{{x}^{6}}+37500{{x}^{5}}y+37500{{x}^{4}}{{y}^{2}}+20000{{x}^{3}}{{y}^{3}}+6000{{x}^{2}}{{y}^{4}}+960x{{y}^{5}}+64{{y}^{6}}\].
Note: Students must be thorough with binomial theorem as they have a chance of making mistakes when writing the formula. They must know standard combination results like $^{n}{{C}_{0}}=1{{,}^{n}}{{C}_{1}}=n$ and $^{n}{{C}_{n}}=1$ to save time. Students must be very careful when doing the mathematical calculations.
Complete step-by-step solution:
We need to expand ${{\left( 5x+2y \right)}^{6}}$ using Binomial Theorem. Let us see what Binomial Theorem is. Binomial Theorem states that
${{\left( a+b \right)}^{n}}=\sum\limits_{r=0}^{n}{^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}}...(i)$ , where $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$
We are given that ${{\left( 5x+2y \right)}^{6}}$ . When we compare this with the Binomial Theorem, we can see that $a=5x,b=2y,n=6$ . Now, let us substitute these values in (i). We will get
${{\left( 5x+2y \right)}^{6}}=\sum\limits_{r=0}^{6}{^{6}{{C}_{r}}{{\left( 5x \right)}^{6-r}}{{\left( 2y \right)}^{r}}}$
Let us expand this.
\[{{\left( 5x+2y \right)}^{6}}{{=}^{6}}{{C}_{0}}{{\left( 5x \right)}^{6-0}}{{\left( 2y \right)}^{0}}{{+}^{6}}{{C}_{1}}{{\left( 5x \right)}^{6-1}}{{\left( 2y \right)}^{1}}{{+}^{6}}{{C}_{2}}{{\left( 5x \right)}^{6-2}}{{\left( 2y \right)}^{2}}{{+}^{6}}{{C}_{3}}{{\left( 5x \right)}^{6-3}}{{\left( 2y \right)}^{3}}{{+}^{6}}{{C}_{4}}{{\left( 5x \right)}^{6-4}}{{\left( 2y \right)}^{4}}{{+}^{6}}{{C}_{5}}{{\left( 5x \right)}^{6-5}}{{\left( 2y \right)}^{5}}{{+}^{6}}{{C}_{6}}{{\left( 5x \right)}^{6-6}}{{\left( 2y \right)}^{6}}\]
Let us simplify this further.
\[{{\left( 5x+2y \right)}^{6}}{{=}^{6}}{{C}_{0}}{{\left( 5x \right)}^{6}}{{+}^{6}}{{C}_{1}}{{\left( 5x \right)}^{5}}2y{{+}^{6}}{{C}_{2}}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}{{+}^{6}}{{C}_{3}}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}{{+}^{6}}{{C}_{4}}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}{{+}^{6}}{{C}_{5}}5x{{\left( 2y \right)}^{5}}{{+}^{6}}{{C}_{6}}{{\left( 5x \right)}^{0}}{{\left( 2y \right)}^{6}}\]We know that $^{n}{{C}_{0}}=1{{,}^{n}}{{C}_{1}}=n$ and $^{n}{{C}_{n}}=1$ . Let us use these values in the above expansion.
\[{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y{{+}^{6}}{{C}_{2}}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}{{+}^{6}}{{C}_{3}}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}{{+}^{6}}{{C}_{4}}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}{{+}^{6}}{{C}_{5}}5x{{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}\]
We know that $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$ . Therefore, we can simplify the above expansion as follows.
\[{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+\dfrac{6!}{\left( 6-2 \right)!2!}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+\dfrac{6!}{\left( 6-3 \right)!3!}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+\dfrac{6!}{\left( 6-4 \right)!4!}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+\dfrac{6!}{\left( 6-5 \right)!5!}\left( 5x \right){{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}\]
Let us simplify the above form further.
\[{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+\dfrac{6!}{4!2!}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+\dfrac{6!}{3!3!}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+\dfrac{6!}{2!4!}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+\dfrac{6!}{1!5!}\left( 5x \right){{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}\]
We know that \[n!=n\times \left( n-1 \right)\times \left( n-2 \right)...\times 1\] . Also we can represent any factorial as \[n!=n\times \left( n-1 \right)!\] . Let us solve the above expansion.
\[{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+\dfrac{6\times 5\times 4!}{4!2!}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+\dfrac{6\times 5\times 4\times 3!}{3!3!}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+\dfrac{6\times 5\times 4!}{2!4!}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+\dfrac{6\times 5!}{1!5!}\left( 5x \right){{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}\]
Let us cancel the common terms from numerator and denominator.
\[{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+\dfrac{6\times 5}{2!}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+\dfrac{6\times 5\times 4}{3!}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+\dfrac{6\times 5}{2!}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+\dfrac{6}{1!}\left( 5x \right){{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}\]
Now, let us expand the factorial. We will get
\[{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+\dfrac{6\times 5}{2\times 1}{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+\dfrac{6\times 5\times 4}{3\times 2\times 1}{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+\dfrac{6\times 5}{2\times 1}{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+\dfrac{6}{1}\times 5x{{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}\]
We can now cancel the common terms from numerator and denominator.
\[{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+3\times 5\times {{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+2\times 5\times 2{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+3\times 5\times {{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+6\times 5x{{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}\]
On solving the above expansion, we will get
\[{{\left( 5x+2y \right)}^{6}}={{\left( 5x \right)}^{6}}+6{{\left( 5x \right)}^{5}}2y+15{{\left( 5x \right)}^{4}}{{\left( 2y \right)}^{2}}+20{{\left( 5x \right)}^{3}}{{\left( 2y \right)}^{3}}+15{{\left( 5x \right)}^{2}}{{\left( 2y \right)}^{4}}+30x{{\left( 2y \right)}^{5}}+{{\left( 2y \right)}^{6}}\]Let us expand the powers.
\[\begin{align}
& {{\left( 5x+2y \right)}^{6}}=15625{{x}^{6}}+6\times 3125{{x}^{5}}2y+15\times 625{{x}^{4}}4{{y}^{2}}+20\times 125{{x}^{3}}8{{y}^{3}}+15\times 25{{x}^{2}}16{{y}^{4}}+30x32{{y}^{5}}+64{{y}^{6}} \\
& \Rightarrow {{\left( 5x+2y \right)}^{6}}=15625{{x}^{6}}+37500{{x}^{5}}y+37500{{x}^{4}}{{y}^{2}}+20000{{x}^{3}}{{y}^{3}}+6000{{x}^{2}}{{y}^{4}}+960x{{y}^{5}}+64{{y}^{6}} \\
\end{align}\]
Hence, the expansion of ${{\left( 5x+2y \right)}^{6}}$ is \[15625{{x}^{6}}+37500{{x}^{5}}y+37500{{x}^{4}}{{y}^{2}}+20000{{x}^{3}}{{y}^{3}}+6000{{x}^{2}}{{y}^{4}}+960x{{y}^{5}}+64{{y}^{6}}\].
Note: Students must be thorough with binomial theorem as they have a chance of making mistakes when writing the formula. They must know standard combination results like $^{n}{{C}_{0}}=1{{,}^{n}}{{C}_{1}}=n$ and $^{n}{{C}_{n}}=1$ to save time. Students must be very careful when doing the mathematical calculations.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
