
How do you use the binomial series to expand \[{(x + 2)^7}\] ?
Answer
544.5k+ views
Hint: First, we need to know about the relation between binomial expansion and Pascal’s triangle. The word binomial stands for expressions having two terms. For example: $(1 + x)$ , $(x + y)$ and etc.
Pascal triangle is an arrangement of the numbers \[{}^n{C_r}\] in a triangular form.
Binomial expansion of ${(a + b)^n}$ is
${(a + b)^n} = {}^n{C_0}{a^n}{b^o} + {}^n{C_1}{a^{n - 1}}{b^1} + \cdots + {}^n{C_r}{a^{n - r}}{b^r} + \cdots + {}^n{C_n}{a^0}{b^n}$ .
For example, from the fifth row we can write down the expansion of ${(a + b)^4}$ and from the sixth row we can write down the expansion of ${(a + b)^5}$ and so on. We know the terms (without coefficients) of ${(a + b)^5}$ are:
${a^5},{a^4}b,{a^3}{b^2},{a^2}{b^3},a{b^4},{b^5}$
The two variable’s power adding them together
And the sixth row of the Pascal triangle is
$1$ $5$ $10$ $10$ $5$ $1$
Using these two we can write
${(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}$
Complete step-by-step solution:
The given binomial expansion is \[{(x + 2)^7}\] .
Let consider, $a = x$ and $b = 2$
$n = 7$
The seventh row of Pascal triangle is
$1$ $7$ $21$ $35$ $35$ $21$ $7$ $1$
The terms (without coefficients) of ${(a + b)^7}$
${a^7},{a^6}b,{a^5}{b^2},{a^4}{b^3},{a^3}{b^4},{a^2}{b^5},a{b^6},{b^7}$
The two variable’s power adding them together
Using the two, we can write,
${(a + b)^7} = {a^7} + 7{a^6}b + 21{a^5}{b^2} + 35{a^4}{b^3} + 35{a^3}{b^4} + 21{a^2}{b^5} + 7a{b^6} + {b^7}$
Then $a$ and $b$ value substituting $x$ and $7$ respectively in the equation of ${(a + b)^7}$
This can be applied
${(x + 2)^7} = {x^7} + 7{x^6}(2) + 21{x^5}{(2)^2} + 35{x^4}{(2)^3} + 35{x^3}{(2)^4} + 21{x^2}{(2)^5} + 7x{(2)^6} + {(2)^7}$
Now, we have to find the value of every required power of $(2)$ . For example, ${(2)^2} = 2 \times 2 = 4$
And finding every power of values,
${(x + 2)^7} = {x^7} + 7{x^6}(2) + 21{x^5}(4) + 35{x^4}(8) + 35{x^3}(16) + 21{x^2}(32) + 7x(64) + (128)$
Now we will multiply the coefficient of $x$ by the power of $(2)$ values.
$7{x^6}(2) = 7 \times 2{x^6} = 14{x^6}$
$21{x^5}{(2)^2} = 21 \times 4{x^5} = 84{x^5}$
$35{x^4}{(2)^3} = 35 \times 8{x^4} = 280{x^4}$
$35{x^3}{(2)^4} = 35 \times 16{x^3} = 560{x^3}$
$21{x^2}{(2)^5} = 21 \times 32{x^2} = 672{x^2}$
$7x{(2)^6} = 7 \times 64x = 448x$
Now, substituting in the equation, we get,
${(x + 2)^7} = {x^7} + 14{x^6} + 84{x^5} + 280{x^4} + 560{x^3} + 672{x^2} + 448x + 128$
Then, the required \[{(x + 2)^7}\] binomial expansion is
${(x + 2)^7} = {x^7} + 14{x^6} + 84{x^5} + 280{x^4} + 560{x^3} + 672{x^2} + 448x + 128$
Note: If $n$ is any positive integer, then
${(a + b)^n} = {}^n{C_0}{a^n}{b^o} + {}^n{C_1}{a^{n - 1}}{b^1} + \cdots + {}^n{C_r}{a^{n - r}}{b^r} + \cdots + {}^n{C_n}{a^0}{b^n}$, $n \in \mathbb{N}$
Some cases of binomial theorem,
Replacing $b$ by $( - b)$, in the binomial expansion of ${(a + b)^n},n \in \mathbb{N}$ , we get
${(a - b)^n} = {}^n{C_0}{a^n}{b^o} - {}^n{C_1}{a^{n - 1}}{b^1} + {}^n{C_2}{a^{n - 2}}{b^2} - \cdots + {( - 1)^r}{}^n{C_r}{a^{n - r}}{b^r} + \cdots + {( - 1)^n}{}^n{C_n}{a^0}{b^n}$
Observe that the sign $' + '$ and $' - '$ appear alternately in the binomial expansion of ${(a - b)^n}$ .
Replacing $a$ by $1$ and $b$ by $x$ , in the binomial expansion of ${(a + b)^n}$ , we get
${(1 + x)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + \cdots + {}^n{C_r}{x^r} + \cdots + {}^n{C_n}{x^n}.$
Pascal triangle is an arrangement of the numbers \[{}^n{C_r}\] in a triangular form.
Binomial expansion of ${(a + b)^n}$ is
${(a + b)^n} = {}^n{C_0}{a^n}{b^o} + {}^n{C_1}{a^{n - 1}}{b^1} + \cdots + {}^n{C_r}{a^{n - r}}{b^r} + \cdots + {}^n{C_n}{a^0}{b^n}$ .
For example, from the fifth row we can write down the expansion of ${(a + b)^4}$ and from the sixth row we can write down the expansion of ${(a + b)^5}$ and so on. We know the terms (without coefficients) of ${(a + b)^5}$ are:
${a^5},{a^4}b,{a^3}{b^2},{a^2}{b^3},a{b^4},{b^5}$
The two variable’s power adding them together
And the sixth row of the Pascal triangle is
$1$ $5$ $10$ $10$ $5$ $1$
Using these two we can write
${(a + b)^5} = {a^5} + 5{a^4}b + 10{a^3}{b^2} + 10{a^2}{b^3} + 5a{b^4} + {b^5}$
Complete step-by-step solution:
The given binomial expansion is \[{(x + 2)^7}\] .
Let consider, $a = x$ and $b = 2$
$n = 7$
The seventh row of Pascal triangle is
$1$ $7$ $21$ $35$ $35$ $21$ $7$ $1$
The terms (without coefficients) of ${(a + b)^7}$
${a^7},{a^6}b,{a^5}{b^2},{a^4}{b^3},{a^3}{b^4},{a^2}{b^5},a{b^6},{b^7}$
The two variable’s power adding them together
Using the two, we can write,
${(a + b)^7} = {a^7} + 7{a^6}b + 21{a^5}{b^2} + 35{a^4}{b^3} + 35{a^3}{b^4} + 21{a^2}{b^5} + 7a{b^6} + {b^7}$
Then $a$ and $b$ value substituting $x$ and $7$ respectively in the equation of ${(a + b)^7}$
This can be applied
${(x + 2)^7} = {x^7} + 7{x^6}(2) + 21{x^5}{(2)^2} + 35{x^4}{(2)^3} + 35{x^3}{(2)^4} + 21{x^2}{(2)^5} + 7x{(2)^6} + {(2)^7}$
Now, we have to find the value of every required power of $(2)$ . For example, ${(2)^2} = 2 \times 2 = 4$
And finding every power of values,
${(x + 2)^7} = {x^7} + 7{x^6}(2) + 21{x^5}(4) + 35{x^4}(8) + 35{x^3}(16) + 21{x^2}(32) + 7x(64) + (128)$
Now we will multiply the coefficient of $x$ by the power of $(2)$ values.
$7{x^6}(2) = 7 \times 2{x^6} = 14{x^6}$
$21{x^5}{(2)^2} = 21 \times 4{x^5} = 84{x^5}$
$35{x^4}{(2)^3} = 35 \times 8{x^4} = 280{x^4}$
$35{x^3}{(2)^4} = 35 \times 16{x^3} = 560{x^3}$
$21{x^2}{(2)^5} = 21 \times 32{x^2} = 672{x^2}$
$7x{(2)^6} = 7 \times 64x = 448x$
Now, substituting in the equation, we get,
${(x + 2)^7} = {x^7} + 14{x^6} + 84{x^5} + 280{x^4} + 560{x^3} + 672{x^2} + 448x + 128$
Then, the required \[{(x + 2)^7}\] binomial expansion is
${(x + 2)^7} = {x^7} + 14{x^6} + 84{x^5} + 280{x^4} + 560{x^3} + 672{x^2} + 448x + 128$
Note: If $n$ is any positive integer, then
${(a + b)^n} = {}^n{C_0}{a^n}{b^o} + {}^n{C_1}{a^{n - 1}}{b^1} + \cdots + {}^n{C_r}{a^{n - r}}{b^r} + \cdots + {}^n{C_n}{a^0}{b^n}$, $n \in \mathbb{N}$
Some cases of binomial theorem,
Replacing $b$ by $( - b)$, in the binomial expansion of ${(a + b)^n},n \in \mathbb{N}$ , we get
${(a - b)^n} = {}^n{C_0}{a^n}{b^o} - {}^n{C_1}{a^{n - 1}}{b^1} + {}^n{C_2}{a^{n - 2}}{b^2} - \cdots + {( - 1)^r}{}^n{C_r}{a^{n - r}}{b^r} + \cdots + {( - 1)^n}{}^n{C_n}{a^0}{b^n}$
Observe that the sign $' + '$ and $' - '$ appear alternately in the binomial expansion of ${(a - b)^n}$ .
Replacing $a$ by $1$ and $b$ by $x$ , in the binomial expansion of ${(a + b)^n}$ , we get
${(1 + x)^n} = {}^n{C_0} + {}^n{C_1}x + {}^n{C_2}{x^2} + \cdots + {}^n{C_r}{x^r} + \cdots + {}^n{C_n}{x^n}.$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

