
How do you use the angle sum or difference identity to find the exact value of \[\tan {195^ \circ }\]?
Answer
544.8k+ views
Hint: To solve this problem, you should know the formula for the addition and difference identity and also you must know how we can divide the $ \theta $ into the addition form or in the difference form so that we can apply the value in either one of these identities and solve this problem.
Complete step-by-step answer:
Using a different identity we are going to solve this problem. And first let us divide the $ \theta = {195^ \circ } $ into $ (180 + 15) $ and substituting the value we get,
$ \tan ({195^ \circ }) = \tan ({180^ \circ } + {15^ \circ }) $
We know that, $ \tan ({180^ \circ } + \theta ) = \tan \theta $ and hence the above equation can be written as,
$ \tan ({195^ \circ }) = \tan {15^ \circ } $
Now to apply the difference identity we need to divide $ \theta = {15^ \circ } $ into known $ \theta $ values, so we have to divide $ \theta = 15 $ into $ ({45^ \circ } - {30^ \circ }) $ we get,
$ \tan {15^ \circ } = \tan ({45^ \circ } - {30^ \circ }) $
The formula for the difference identity is,
$ \tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}} $
$ \tan ({45^ \circ } - {30^ \circ }) = \dfrac{{\tan {{45}^ \circ } - \tan {{30}^ \circ }}}{{1 + \tan {{45}^ \circ }\tan {{30}^ \circ }}} $
It is mandatory to divide the value of $ \theta $ into known values and now we can able to solve this problem as we know the value of $ \tan {45^ \circ } = 1 $ and $ \tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }} $ . Applying the values in the formula we get,
$
\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{1 - \dfrac{1}{{\sqrt 3 }}}}{{1 + (1)\left( {\dfrac{1}{{\sqrt 3 }}} \right)}} \\
\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{\dfrac{{\sqrt {3}-1 }}{{\sqrt 3 }}}}{{\dfrac{{\sqrt {3}+1 }}{{\sqrt 3 }}}} \\
\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{\sqrt {3}-1 }}{{\sqrt {3}+1}} \;
$
Taking complex conjugate we get,
$
\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}} \\
\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{{{(\sqrt 3 - 1)}^2}}}{{{{(\sqrt 3 )}^2} - {1^2}}} \\
\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{3 - 2\sqrt 3 + 1}}{2} \\
\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{4 - 2\sqrt 3 }}{2} \\
\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{2(2 - \sqrt 3 )}}{2} \\
\tan ({45^ \circ } - {30^ \circ }) = 2 - \sqrt 3 \\
\tan ({45^ \circ } - {30^ \circ }) = 0.268 \;
$
So, the correct answer is “0.268”.
Note: We can also use the addition identity to solve this problem and the formula for addition identity is, $ \dfrac{{\cot A\cot B - 1}}{{\cot A\cot B}} $ . I may give you some more hints that are $ \tan (270 - \theta ) = \cot \theta $ . With this you can solve this problem by yourself.
We can solve this problem in both methods. Before applying the formula we have to convert the value of $ \theta $ into known values, so that it is easy for us to solve this type of problem. Don’t forget to work out the alternative method.
Complete step-by-step answer:
Using a different identity we are going to solve this problem. And first let us divide the $ \theta = {195^ \circ } $ into $ (180 + 15) $ and substituting the value we get,
$ \tan ({195^ \circ }) = \tan ({180^ \circ } + {15^ \circ }) $
We know that, $ \tan ({180^ \circ } + \theta ) = \tan \theta $ and hence the above equation can be written as,
$ \tan ({195^ \circ }) = \tan {15^ \circ } $
Now to apply the difference identity we need to divide $ \theta = {15^ \circ } $ into known $ \theta $ values, so we have to divide $ \theta = 15 $ into $ ({45^ \circ } - {30^ \circ }) $ we get,
$ \tan {15^ \circ } = \tan ({45^ \circ } - {30^ \circ }) $
The formula for the difference identity is,
$ \tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}} $
$ \tan ({45^ \circ } - {30^ \circ }) = \dfrac{{\tan {{45}^ \circ } - \tan {{30}^ \circ }}}{{1 + \tan {{45}^ \circ }\tan {{30}^ \circ }}} $
It is mandatory to divide the value of $ \theta $ into known values and now we can able to solve this problem as we know the value of $ \tan {45^ \circ } = 1 $ and $ \tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }} $ . Applying the values in the formula we get,
$
\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{1 - \dfrac{1}{{\sqrt 3 }}}}{{1 + (1)\left( {\dfrac{1}{{\sqrt 3 }}} \right)}} \\
\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{\dfrac{{\sqrt {3}-1 }}{{\sqrt 3 }}}}{{\dfrac{{\sqrt {3}+1 }}{{\sqrt 3 }}}} \\
\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{\sqrt {3}-1 }}{{\sqrt {3}+1}} \;
$
Taking complex conjugate we get,
$
\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}} \times \dfrac{{\sqrt 3 - 1}}{{\sqrt 3 - 1}} \\
\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{{{(\sqrt 3 - 1)}^2}}}{{{{(\sqrt 3 )}^2} - {1^2}}} \\
\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{3 - 2\sqrt 3 + 1}}{2} \\
\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{4 - 2\sqrt 3 }}{2} \\
\tan ({45^ \circ } - {30^ \circ }) = \dfrac{{2(2 - \sqrt 3 )}}{2} \\
\tan ({45^ \circ } - {30^ \circ }) = 2 - \sqrt 3 \\
\tan ({45^ \circ } - {30^ \circ }) = 0.268 \;
$
So, the correct answer is “0.268”.
Note: We can also use the addition identity to solve this problem and the formula for addition identity is, $ \dfrac{{\cot A\cot B - 1}}{{\cot A\cot B}} $ . I may give you some more hints that are $ \tan (270 - \theta ) = \cot \theta $ . With this you can solve this problem by yourself.
We can solve this problem in both methods. Before applying the formula we have to convert the value of $ \theta $ into known values, so that it is easy for us to solve this type of problem. Don’t forget to work out the alternative method.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

