
How do you use substitution to integrate $x\sqrt {2x + 1} dx$?
Answer
560.4k+ views
Hint: We have been given an integration $\int {f\left( x \right)dx} $ . To evaluate the integral using integration by substitution method, we transformed the given integral into another form by changing the independent variable $x$ into $t$ by using $x = g\left( t \right)$ such that after the substitution, the given integral is converted into directly known integrals.
Complete step-by-step solution:
Step 1: Given integral is $\int {x\sqrt {2x + 1} dx} $. Let us consider that given integration is equal to $I$, so we get
$I = \int {x\sqrt {2x + 1} dx} $
Now, we substitute $2x + 1 = t$ .
Now to replace the value of $dx$, we differentiate the $2x + 1 = t$ with respect to $x$ , we get
$
2dx = dt \\
dx = \dfrac{{dt}}{2} \\
$
and to replace the value of $x$ , simplifying the equation , we get
$
\Rightarrow 2x = t - 1 \\
\Rightarrow x = \dfrac{{t - 1}}{2} \\
$
Step 2: Now substituting all the values in the given integral, we get
$
I = \int {x\sqrt {2x + 1} dx} \\
= \int {\left( {\dfrac{{t - 1}}{2}} \right)} \times \sqrt t \times \dfrac{{dt}}{2} \\
$
Step 3: Now multiplying the brackets, we get \[I = \dfrac{1}{4}\int {\left( {{t^{1 + \dfrac{1}{2}}} - {t^{\dfrac{1}{2}}}} \right)} dt\]
Adding the powers, we get
$\Rightarrow$\[I = \dfrac{1}{4}\int {\left( {{t^{\dfrac{3}{2}}} - {t^{\dfrac{1}{2}}}} \right)} dt\]
Step 4: Now integrating the above expression using the standard formula of integration, we get
$\Rightarrow$\[I = \dfrac{1}{4}\left( {\dfrac{{{t^{\dfrac{3}{2} + 1}}}}{{\dfrac{3}{2} + 1}} - \dfrac{{{t^{\dfrac{1}{2} + 1}}}}{{\dfrac{1}{2} + 1}}} \right) + C\]
Adding the powers in the numerator and adding the numbers in denominator, we get
$\Rightarrow$\[I = \dfrac{1}{4}\left( {\dfrac{{{t^{\dfrac{5}{2}}}}}{{\dfrac{5}{2}}} - \dfrac{{{t^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}}} \right) + C\]
Now simplifying the above expression, we get
\[
\Rightarrow I = \dfrac{1}{4}\left( {\dfrac{{2{t^{\dfrac{5}{2}}}}}{5} - \dfrac{{2{t^{\dfrac{3}{2}}}}}{3}} \right) + C \\
\Rightarrow I = \dfrac{1}{2}\left( {\dfrac{{{t^{\dfrac{5}{2}}}}}{5} - \dfrac{{{t^{\dfrac{3}{2}}}}}{3}} \right) + C \\
\]
Step 5: Now to get the original integrand, we replace the value of $t$ .
In the beginning we have consider the value of $t = 2x + 1$ , so replacing the value of $t$ , we get
\[\Rightarrow I = \dfrac{1}{2}\left( {\dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{5}{2}}}}}{5} - \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{3}} \right) + C\]
Taking ${\left( {2x + 1} \right)^{\dfrac{3}{2}}}$ common from numerator, we get
\[ \Rightarrow I = \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{2}\left( {\dfrac{{\left( {2x + 1} \right)}}{5} - \dfrac{1}{3}} \right) + C\]
Step 6: Taking LCM inside the bracket and simplify, we get
\[
\Rightarrow I = \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{2}\left( {\dfrac{{3\left( {2x + 1} \right) - 5}}{{15}}} \right) + C \\
\Rightarrow I = \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{2}\left( {\dfrac{{6x + 3 - 5}}{{15}}} \right) + C \\
\Rightarrow I = \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{2}\left( {\dfrac{{6x - 2}}{{15}}} \right) + C \\
\]
Now take $2$ common from the bracket, we get
\[
\Rightarrow I = \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{2}\left( {\dfrac{{2\left( {3x - 1} \right)}}{{15}}} \right) + C \\
\Rightarrow I = {\left( {2x + 1} \right)^{\dfrac{3}{2}}}\left( {\dfrac{{3x - 1}}{{15}}} \right) + C \\
\]
This is the final integration of the given function.
Note: Formula to integrate ${x^n}$ is given as
\[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C\] , where $C$ is the constant of integration.
It is important to guess the useful substitution function. Choose the substitution function such that its derivative also occurs in the integrand.
Complete step-by-step solution:
Step 1: Given integral is $\int {x\sqrt {2x + 1} dx} $. Let us consider that given integration is equal to $I$, so we get
$I = \int {x\sqrt {2x + 1} dx} $
Now, we substitute $2x + 1 = t$ .
Now to replace the value of $dx$, we differentiate the $2x + 1 = t$ with respect to $x$ , we get
$
2dx = dt \\
dx = \dfrac{{dt}}{2} \\
$
and to replace the value of $x$ , simplifying the equation , we get
$
\Rightarrow 2x = t - 1 \\
\Rightarrow x = \dfrac{{t - 1}}{2} \\
$
Step 2: Now substituting all the values in the given integral, we get
$
I = \int {x\sqrt {2x + 1} dx} \\
= \int {\left( {\dfrac{{t - 1}}{2}} \right)} \times \sqrt t \times \dfrac{{dt}}{2} \\
$
Step 3: Now multiplying the brackets, we get \[I = \dfrac{1}{4}\int {\left( {{t^{1 + \dfrac{1}{2}}} - {t^{\dfrac{1}{2}}}} \right)} dt\]
Adding the powers, we get
$\Rightarrow$\[I = \dfrac{1}{4}\int {\left( {{t^{\dfrac{3}{2}}} - {t^{\dfrac{1}{2}}}} \right)} dt\]
Step 4: Now integrating the above expression using the standard formula of integration, we get
$\Rightarrow$\[I = \dfrac{1}{4}\left( {\dfrac{{{t^{\dfrac{3}{2} + 1}}}}{{\dfrac{3}{2} + 1}} - \dfrac{{{t^{\dfrac{1}{2} + 1}}}}{{\dfrac{1}{2} + 1}}} \right) + C\]
Adding the powers in the numerator and adding the numbers in denominator, we get
$\Rightarrow$\[I = \dfrac{1}{4}\left( {\dfrac{{{t^{\dfrac{5}{2}}}}}{{\dfrac{5}{2}}} - \dfrac{{{t^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}}} \right) + C\]
Now simplifying the above expression, we get
\[
\Rightarrow I = \dfrac{1}{4}\left( {\dfrac{{2{t^{\dfrac{5}{2}}}}}{5} - \dfrac{{2{t^{\dfrac{3}{2}}}}}{3}} \right) + C \\
\Rightarrow I = \dfrac{1}{2}\left( {\dfrac{{{t^{\dfrac{5}{2}}}}}{5} - \dfrac{{{t^{\dfrac{3}{2}}}}}{3}} \right) + C \\
\]
Step 5: Now to get the original integrand, we replace the value of $t$ .
In the beginning we have consider the value of $t = 2x + 1$ , so replacing the value of $t$ , we get
\[\Rightarrow I = \dfrac{1}{2}\left( {\dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{5}{2}}}}}{5} - \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{3}} \right) + C\]
Taking ${\left( {2x + 1} \right)^{\dfrac{3}{2}}}$ common from numerator, we get
\[ \Rightarrow I = \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{2}\left( {\dfrac{{\left( {2x + 1} \right)}}{5} - \dfrac{1}{3}} \right) + C\]
Step 6: Taking LCM inside the bracket and simplify, we get
\[
\Rightarrow I = \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{2}\left( {\dfrac{{3\left( {2x + 1} \right) - 5}}{{15}}} \right) + C \\
\Rightarrow I = \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{2}\left( {\dfrac{{6x + 3 - 5}}{{15}}} \right) + C \\
\Rightarrow I = \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{2}\left( {\dfrac{{6x - 2}}{{15}}} \right) + C \\
\]
Now take $2$ common from the bracket, we get
\[
\Rightarrow I = \dfrac{{{{\left( {2x + 1} \right)}^{\dfrac{3}{2}}}}}{2}\left( {\dfrac{{2\left( {3x - 1} \right)}}{{15}}} \right) + C \\
\Rightarrow I = {\left( {2x + 1} \right)^{\dfrac{3}{2}}}\left( {\dfrac{{3x - 1}}{{15}}} \right) + C \\
\]
This is the final integration of the given function.
Note: Formula to integrate ${x^n}$ is given as
\[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C\] , where $C$ is the constant of integration.
It is important to guess the useful substitution function. Choose the substitution function such that its derivative also occurs in the integrand.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

