
How do you use second fundamental theorem of calculus to find the derivative of given $\int{\left[ \dfrac{{{\ln }^{2}}\left( t \right)}{t} \right]}dt$ from [3, x]?
Answer
555.9k+ views
Hint: Now we are given with the integral $\int{\left[ \dfrac{{{\ln }^{2}}\left( t \right)}{t} \right]}dt$ . To solve this integral we will first use the method of substitution. To do so we will substitute ln(t) = u. Now we will get a simplified integral which can be solved by using the standard integral $\int{{{x}^{n}}}=\dfrac{{{x}^{n+1}}}{n+1}+C$ . Now we know that according to second fundamental theorem of calculus we have if $F'\left( x \right)=f\left( x \right)$ then $\int\limits_{a}^{b}{f\left( x \right)}=F\left( b \right)-F\left( a \right)$ . Hence using this we will get the integral $\int{\left[ \dfrac{{{\ln }^{2}}\left( t \right)}{t} \right]}dt$ from [3, x].
Complete step-by-step solution:
Now first let us solve the given integration $\int{\left[ \dfrac{{{\ln }^{2}}\left( t \right)}{t} \right]}dt$
To solve the integration we will use a method of substitution.
Let us substitute ln(t) = u.
Now differentiating the above equation on both sides we get,
$\Rightarrow \dfrac{1}{t}dt=du$
Now we will re-substitute the values of ln(t) and $\dfrac{1}{t}dt$ in the given integral. Hence, we get
$\Rightarrow \int{\left[ \dfrac{{{\ln }^{2}}\left( t \right)}{t} \right]}dt=\int{{{u}^{2}}du}$
Now we know the standard integral $\int{{{x}^{n}}}=\dfrac{{{x}^{n+1}}}{n+1}+C$ Hence using this we get,
$\int{{{u}^{2}}}=\dfrac{{{u}^{3}}}{3}+C$
Now re-substituting the value of u we get,
\[\Rightarrow \int{\left[ \dfrac{\ln {{\left( t \right)}^{2}}}{t} \right]dt}=\dfrac{\ln {{\left( t \right)}^{3}}}{3}+C..............\left( 1 \right)\]
Now by second fundamental theorem of calculus we know that if we have $F'\left( x \right)=f\left( x \right)$ then $\int\limits_{a}^{b}{f\left( x \right)}=F\left( b \right)-F\left( a \right)$ . Hence using this theorem and equation (1) we get,
$\begin{align}
& \Rightarrow \int_{3}^{x}{\dfrac{{{\ln }^{2}}\left( t \right)}{t}}dt=\dfrac{{{\ln }^{3}}\left( x \right)}{3}-\dfrac{{{\ln }^{3}}\left( 3 \right)}{3} \\
& \Rightarrow \int_{3}^{x}{\dfrac{{{\ln }^{2}}\left( t \right)}{t}}dt=\dfrac{{{\ln }^{3}}\left( x \right)-{{\ln }^{3}}3}{3} \\
\end{align}$
Hence by second fundamental theorem of calculus we get $\int_{3}^{x}{\dfrac{{{\ln }^{2}}\left( t \right)}{t}}dt=\dfrac{{{\ln }^{3}}\left( x \right)-{{\ln }^{3}}3}{3}$
Note: Now keep a note that if we have $F'\left( x \right)=f\left( x \right)$ then $\int\limits_{a}^{b}{f\left( x \right)}=F\left( b \right)-F\left( a \right)$ and not $\int_{a}^{b}{F\left( x \right)}=f\left( b \right)-f\left( a \right)$ . Also while using the method of substitution always remember to re-substitute the expression by the original variable. Also while changing variables do not forget to change the derivative of the respective variable. For example if we substitute $\ln \left( t \right)=u$ then $du=\dfrac{1}{t}dt$ Hence do not just replace the differential dt by du.
Complete step-by-step solution:
Now first let us solve the given integration $\int{\left[ \dfrac{{{\ln }^{2}}\left( t \right)}{t} \right]}dt$
To solve the integration we will use a method of substitution.
Let us substitute ln(t) = u.
Now differentiating the above equation on both sides we get,
$\Rightarrow \dfrac{1}{t}dt=du$
Now we will re-substitute the values of ln(t) and $\dfrac{1}{t}dt$ in the given integral. Hence, we get
$\Rightarrow \int{\left[ \dfrac{{{\ln }^{2}}\left( t \right)}{t} \right]}dt=\int{{{u}^{2}}du}$
Now we know the standard integral $\int{{{x}^{n}}}=\dfrac{{{x}^{n+1}}}{n+1}+C$ Hence using this we get,
$\int{{{u}^{2}}}=\dfrac{{{u}^{3}}}{3}+C$
Now re-substituting the value of u we get,
\[\Rightarrow \int{\left[ \dfrac{\ln {{\left( t \right)}^{2}}}{t} \right]dt}=\dfrac{\ln {{\left( t \right)}^{3}}}{3}+C..............\left( 1 \right)\]
Now by second fundamental theorem of calculus we know that if we have $F'\left( x \right)=f\left( x \right)$ then $\int\limits_{a}^{b}{f\left( x \right)}=F\left( b \right)-F\left( a \right)$ . Hence using this theorem and equation (1) we get,
$\begin{align}
& \Rightarrow \int_{3}^{x}{\dfrac{{{\ln }^{2}}\left( t \right)}{t}}dt=\dfrac{{{\ln }^{3}}\left( x \right)}{3}-\dfrac{{{\ln }^{3}}\left( 3 \right)}{3} \\
& \Rightarrow \int_{3}^{x}{\dfrac{{{\ln }^{2}}\left( t \right)}{t}}dt=\dfrac{{{\ln }^{3}}\left( x \right)-{{\ln }^{3}}3}{3} \\
\end{align}$
Hence by second fundamental theorem of calculus we get $\int_{3}^{x}{\dfrac{{{\ln }^{2}}\left( t \right)}{t}}dt=\dfrac{{{\ln }^{3}}\left( x \right)-{{\ln }^{3}}3}{3}$
Note: Now keep a note that if we have $F'\left( x \right)=f\left( x \right)$ then $\int\limits_{a}^{b}{f\left( x \right)}=F\left( b \right)-F\left( a \right)$ and not $\int_{a}^{b}{F\left( x \right)}=f\left( b \right)-f\left( a \right)$ . Also while using the method of substitution always remember to re-substitute the expression by the original variable. Also while changing variables do not forget to change the derivative of the respective variable. For example if we substitute $\ln \left( t \right)=u$ then $du=\dfrac{1}{t}dt$ Hence do not just replace the differential dt by du.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

What is Saheb looking for in the garbage dump Where class 12 english CBSE

Ketones react with MgHg over water and give A Alcohols class 12 chemistry CBSE

