
How do you use partial fractions to find the integral of$\int {\dfrac{{{e^x}}}{{\left( {{e^{2x}} + 1} \right)\left( {{e^x} - 1} \right)}}} dx$?
Answer
534k+ views
Hint: Partial fraction is the decomposition of an equation which is of the form$\dfrac{{A(x)}}{{B(x)}}$. It makes it easier to solve the integral as it is represented as the sum or difference of fractions. This method is only used when the fraction is linear in the denominator part.
Complete step by step answer:
The equation is as follows:
$\int {\dfrac{{{e^x}}}{{\left( {{e^{2x}} + 1} \right)\left( {{e^x} - 1} \right)}}} dx$
Let us consider , $y = {e^x}$
Differentiating both sides with respect to $x$
$
\dfrac{{dy}}{{dx}} = {e^x} \\
dx = \dfrac{{dy}}{{{e^x}}} \\
$
Now, we substitute these values to the main equation,
$
\int {\dfrac{{{e^x}}}{{({y^2} + 1)(y - 1)}}} .\dfrac{{dy}}{{{e^x}}} \\
\\
$
Now, we cancel ${e^x}$from the numerator and denominator.
Hence, we get
$\int {\dfrac{1}{{({y^2} + 1)(y - 1)}}} dy$
Now, we use partial fractions
$
\dfrac{{Ay + B}}{{{y^2} + 1}} + \dfrac{C}{{y - 1}} = \dfrac{1}{{({y^2} + 1)(y - 1)}} \\
(Ay + B)(y - 1) + C({y^2} + 1) = 1 \\
(A + C){y^2} + (B - A)y + (C - B) = 1 \\
$
We now compare the coefficients on both sides,
$
A + C = 0 \\
B - A = 0 \\
C - B = 1 \\
$
Comparing the above equations we get,
$
B = A \\
A = - C \\
$
Then,
$
C - B = 1 \\
- A - A = 1 \\
- 2A = 1 \\
A = \dfrac{{ - 1}}{2},B = - \dfrac{1}{2},C = \dfrac{1}{2} \\
$
Substituting these values to the equation we get,
$
= \int {\dfrac{{ - \dfrac{1}{2}y - \dfrac{1}{2}}}{{{y^2} + 1}}} + \dfrac{{\dfrac{1}{2}}}{{y - 1}}dy \\
= - \dfrac{1}{2}\int {\dfrac{{y - 1}}{{{y^2} + 1}}} + \dfrac{1}{{y - 1}}dy \\
= - \dfrac{1}{2}\int {\dfrac{{y - 1}}{{{y^2} + 1}}} + \dfrac{1}{{y - 1}}dy \\
= - \dfrac{1}{2}\int {\dfrac{y}{{{y^2} + 1}}} - \dfrac{1}{{{y^2} + 1}} + \dfrac{1}{{y - 1}}dy \\
= - \dfrac{1}{4}\int {\dfrac{{2y}}{{{y^2} + 1}}} + \dfrac{1}{2}\int {\dfrac{1}{{{y^2} + 1}}} - \dfrac{1}{2}\int {\dfrac{1}{{y - 1}}} dy \\
= - \dfrac{1}{4}\log ({y^2} + 1) + \dfrac{1}{2}{\tan ^{ - 1}}(y) - \dfrac{1}{2}\log (y - 1) + C \\
$
Now, substitute$y = {e^x}$, we get
$ = - \dfrac{1}{4}\log ({e^{2x}} + 1) + \dfrac{1}{2}{\tan ^{ - 1}}({e^x}) - \dfrac{1}{2}\log ({e^x} - 1) + C$
Note: If $\dfrac{{A(x)}}{{B(x)}}$ is the equation then the partial fraction is applicable , if and only if, the degree of $A(x)$ is less than that of $B(x)$. If the value is greater, then this method fails and we need to look for some other alternative.
Complete step by step answer:
The equation is as follows:
$\int {\dfrac{{{e^x}}}{{\left( {{e^{2x}} + 1} \right)\left( {{e^x} - 1} \right)}}} dx$
Let us consider , $y = {e^x}$
Differentiating both sides with respect to $x$
$
\dfrac{{dy}}{{dx}} = {e^x} \\
dx = \dfrac{{dy}}{{{e^x}}} \\
$
Now, we substitute these values to the main equation,
$
\int {\dfrac{{{e^x}}}{{({y^2} + 1)(y - 1)}}} .\dfrac{{dy}}{{{e^x}}} \\
\\
$
Now, we cancel ${e^x}$from the numerator and denominator.
Hence, we get
$\int {\dfrac{1}{{({y^2} + 1)(y - 1)}}} dy$
Now, we use partial fractions
$
\dfrac{{Ay + B}}{{{y^2} + 1}} + \dfrac{C}{{y - 1}} = \dfrac{1}{{({y^2} + 1)(y - 1)}} \\
(Ay + B)(y - 1) + C({y^2} + 1) = 1 \\
(A + C){y^2} + (B - A)y + (C - B) = 1 \\
$
We now compare the coefficients on both sides,
$
A + C = 0 \\
B - A = 0 \\
C - B = 1 \\
$
Comparing the above equations we get,
$
B = A \\
A = - C \\
$
Then,
$
C - B = 1 \\
- A - A = 1 \\
- 2A = 1 \\
A = \dfrac{{ - 1}}{2},B = - \dfrac{1}{2},C = \dfrac{1}{2} \\
$
Substituting these values to the equation we get,
$
= \int {\dfrac{{ - \dfrac{1}{2}y - \dfrac{1}{2}}}{{{y^2} + 1}}} + \dfrac{{\dfrac{1}{2}}}{{y - 1}}dy \\
= - \dfrac{1}{2}\int {\dfrac{{y - 1}}{{{y^2} + 1}}} + \dfrac{1}{{y - 1}}dy \\
= - \dfrac{1}{2}\int {\dfrac{{y - 1}}{{{y^2} + 1}}} + \dfrac{1}{{y - 1}}dy \\
= - \dfrac{1}{2}\int {\dfrac{y}{{{y^2} + 1}}} - \dfrac{1}{{{y^2} + 1}} + \dfrac{1}{{y - 1}}dy \\
= - \dfrac{1}{4}\int {\dfrac{{2y}}{{{y^2} + 1}}} + \dfrac{1}{2}\int {\dfrac{1}{{{y^2} + 1}}} - \dfrac{1}{2}\int {\dfrac{1}{{y - 1}}} dy \\
= - \dfrac{1}{4}\log ({y^2} + 1) + \dfrac{1}{2}{\tan ^{ - 1}}(y) - \dfrac{1}{2}\log (y - 1) + C \\
$
Now, substitute$y = {e^x}$, we get
$ = - \dfrac{1}{4}\log ({e^{2x}} + 1) + \dfrac{1}{2}{\tan ^{ - 1}}({e^x}) - \dfrac{1}{2}\log ({e^x} - 1) + C$
Note: If $\dfrac{{A(x)}}{{B(x)}}$ is the equation then the partial fraction is applicable , if and only if, the degree of $A(x)$ is less than that of $B(x)$. If the value is greater, then this method fails and we need to look for some other alternative.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

