
How do you use implicit differentiation to find $\dfrac{{dy}}{{dx}}$ given ${y^2} = 2 + xy?$
Answer
499.8k+ views
Hint: This problem deals with implicit differentiation of the given equation. Implicit differentiation is the procedure of differentiating an implicit equation with respect to the desired variable $x$ while treating the other variables as unspecified functions of $x$. To find $\dfrac{{dy}}{{dx}}$, we follow some procedures. Take $\dfrac{d}{{dx}}$ of both sides of the equation remembering to multiply by $\dfrac{{dy}}{{dx}}$ each time you see a $y$ term.
Complete step-by-step solution:
To implicitly derive a function. Differentiate with respect to $x$. Collect all the $\dfrac{{dy}}{{dx}}$ on one side. Solve for $\dfrac{{dy}}{{dx}}$.
Given the equation in terms of both $x$ and $y$, the equation is shown below:
$ \Rightarrow {y^2} = 2 + xy$
Now differentiate the above equation on both sides with respect to $x$, on both sides of the equation, as given below:
$ \Rightarrow \dfrac{d}{{dx}}\left( {{y^2}} \right) = \dfrac{d}{{dx}}\left( {2 + xy} \right)$
$ \Rightarrow 2y\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( 2 \right) + x\dfrac{d}{{dx}}\left( y \right) + y\dfrac{d}{{dx}}\left( x \right)$
Here using the chain rule of differentiation, in the above expression, and as we know that the derivative of a constant is 0.
$ \Rightarrow 2y\dfrac{{dy}}{{dx}} = 0 + x\dfrac{{dy}}{{dx}} + y\left( 1 \right)$
$ \Rightarrow 2y\dfrac{{dy}}{{dx}} = x\dfrac{{dy}}{{dx}} + y$
Grouping the like terms and the unlike terms together as shown below;
$ \Rightarrow 2y\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}} = y$
$ \Rightarrow \left( {2y - x} \right)\dfrac{{dy}}{{dx}} = y$
Here taking the term $\dfrac{{dy}}{{dx}}$ is common in the left hand side of the equation.
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{\left( {2y - x} \right)}}$
$\therefore \dfrac{{dy}}{{dx}} = \dfrac{y}{{2y - x}}$
The expression of $\dfrac{{dy}}{{dx}}$ is equal to $\dfrac{y}{{2y - x}}$ from implicit differentiation of given equation.
Note: Please note that the technique of implicit differentiation allows you to find the derivative of $y$ with respect to $x$ without having to solve the given equation for$y$. The chain rule must be used whenever the function $y$ is being differentiated because of our assumption that $y$ may be expressed as a function of $x$. The chain rule in differentiation is given by:
$ \Rightarrow \dfrac{d}{{dx}}\left( {{f_1}(x).{f_2}(x)} \right) = {f_1}(x).\dfrac{d}{{dx}}\left( {{f_2}(x)} \right) + {f_2}(x).\dfrac{d}{{dx}}\left( {{f_1}(x)} \right)$
To derive an inverse function, restate it without the inverse then use implicit differentiation.
Complete step-by-step solution:
To implicitly derive a function. Differentiate with respect to $x$. Collect all the $\dfrac{{dy}}{{dx}}$ on one side. Solve for $\dfrac{{dy}}{{dx}}$.
Given the equation in terms of both $x$ and $y$, the equation is shown below:
$ \Rightarrow {y^2} = 2 + xy$
Now differentiate the above equation on both sides with respect to $x$, on both sides of the equation, as given below:
$ \Rightarrow \dfrac{d}{{dx}}\left( {{y^2}} \right) = \dfrac{d}{{dx}}\left( {2 + xy} \right)$
$ \Rightarrow 2y\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( 2 \right) + x\dfrac{d}{{dx}}\left( y \right) + y\dfrac{d}{{dx}}\left( x \right)$
Here using the chain rule of differentiation, in the above expression, and as we know that the derivative of a constant is 0.
$ \Rightarrow 2y\dfrac{{dy}}{{dx}} = 0 + x\dfrac{{dy}}{{dx}} + y\left( 1 \right)$
$ \Rightarrow 2y\dfrac{{dy}}{{dx}} = x\dfrac{{dy}}{{dx}} + y$
Grouping the like terms and the unlike terms together as shown below;
$ \Rightarrow 2y\dfrac{{dy}}{{dx}} - x\dfrac{{dy}}{{dx}} = y$
$ \Rightarrow \left( {2y - x} \right)\dfrac{{dy}}{{dx}} = y$
Here taking the term $\dfrac{{dy}}{{dx}}$ is common in the left hand side of the equation.
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{y}{{\left( {2y - x} \right)}}$
$\therefore \dfrac{{dy}}{{dx}} = \dfrac{y}{{2y - x}}$
The expression of $\dfrac{{dy}}{{dx}}$ is equal to $\dfrac{y}{{2y - x}}$ from implicit differentiation of given equation.
Note: Please note that the technique of implicit differentiation allows you to find the derivative of $y$ with respect to $x$ without having to solve the given equation for$y$. The chain rule must be used whenever the function $y$ is being differentiated because of our assumption that $y$ may be expressed as a function of $x$. The chain rule in differentiation is given by:
$ \Rightarrow \dfrac{d}{{dx}}\left( {{f_1}(x).{f_2}(x)} \right) = {f_1}(x).\dfrac{d}{{dx}}\left( {{f_2}(x)} \right) + {f_2}(x).\dfrac{d}{{dx}}\left( {{f_1}(x)} \right)$
To derive an inverse function, restate it without the inverse then use implicit differentiation.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What is the type of food and mode of feeding of the class 11 biology CBSE
