
How do you use end behaviour, zeroes, y intercepts to sketch the graph of $ f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right) $ ?
Answer
533.4k+ views
Hint: We first find the intercepts of the given function $ f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right) $ which also gives us the roots of the function. Then we use the differentiation to find the extremum points of the function and draw the graph.
Complete step-by-step answer:
We need to find the zeros, y intercepts of the curve $ f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right) $ .
Here the zeroes mean the x intercepts or the roots of the polynomial.
We put the value of $ f\left( x \right)=0 $ and get $ \left( x-4 \right)\left( x-1 \right)\left( x+3 \right)=0 $ which gives the roots as
$ x=-3,1,4 $ . The points are $ \left( -3,0 \right),\left( 1,0 \right),\left( 4,0 \right) $ .
To find the y intercepts we put the value of $ x=0 $ and get $ f\left( x \right)=\left( 0-4 \right)\left( 0-1 \right)\left( 0+3 \right)=12 $ which gives the value as the intersecting point of $ \left( 0,12 \right) $ .
Therefore, to find the extremum points we have to find the first and second order derivatives.
Extremum points in a curve have slope value 0.
The slope of the function $ f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right) $ can be found from the derivative of the function $ {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right] $ .
We differentiate both sides of the function $ f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right) $ with respect to $ x $ .
$ \begin{align}
& f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right)={{x}^{3}}-2{{x}^{2}}-11x+12 \\
& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]=3{{x}^{2}}-4x-11 \\
\end{align} $ .
To find the $ x $ coordinates of the extremum point we take $ 3{{x}^{2}}-4x-11=0 $ .
In the given equation we have $ 3{{x}^{2}}-4x-11=0 $ . The values of $ a,b,c $ is $ 3,-4,-11 $ respectively.
We put the values and get $ x $ as $ x=\dfrac{4\pm \sqrt{{{4}^{2}}-4\times 3\times \left( -11 \right)}}{2\times 3}=\dfrac{4\pm \sqrt{148}}{6}=\dfrac{2\pm \sqrt{37}}{3} $ .
Therefore, from the value of the $ x $ coordinates of the extremum points, we find their $ y $ coordinates.
Therefore, the extremum points are $ x=\dfrac{2\pm \sqrt{37}}{3} $ .
Note: We need to remember that the curve changes its direction on the extremum points only. Other that that the function $ f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right) $ is an increasing function in the range of $ x\in \left[ 4,\infty \right) $ and decreasing function in the range of $ x\in \left( -\infty ,-3 \right] $ .
Complete step-by-step answer:
We need to find the zeros, y intercepts of the curve $ f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right) $ .
Here the zeroes mean the x intercepts or the roots of the polynomial.
We put the value of $ f\left( x \right)=0 $ and get $ \left( x-4 \right)\left( x-1 \right)\left( x+3 \right)=0 $ which gives the roots as
$ x=-3,1,4 $ . The points are $ \left( -3,0 \right),\left( 1,0 \right),\left( 4,0 \right) $ .
To find the y intercepts we put the value of $ x=0 $ and get $ f\left( x \right)=\left( 0-4 \right)\left( 0-1 \right)\left( 0+3 \right)=12 $ which gives the value as the intersecting point of $ \left( 0,12 \right) $ .
Therefore, to find the extremum points we have to find the first and second order derivatives.
Extremum points in a curve have slope value 0.
The slope of the function $ f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right) $ can be found from the derivative of the function $ {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right] $ .
We differentiate both sides of the function $ f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right) $ with respect to $ x $ .
$ \begin{align}
& f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right)={{x}^{3}}-2{{x}^{2}}-11x+12 \\
& \Rightarrow {{f}^{'}}\left( x \right)=\dfrac{d}{dx}\left[ f\left( x \right) \right]=3{{x}^{2}}-4x-11 \\
\end{align} $ .
To find the $ x $ coordinates of the extremum point we take $ 3{{x}^{2}}-4x-11=0 $ .
In the given equation we have $ 3{{x}^{2}}-4x-11=0 $ . The values of $ a,b,c $ is $ 3,-4,-11 $ respectively.
We put the values and get $ x $ as $ x=\dfrac{4\pm \sqrt{{{4}^{2}}-4\times 3\times \left( -11 \right)}}{2\times 3}=\dfrac{4\pm \sqrt{148}}{6}=\dfrac{2\pm \sqrt{37}}{3} $ .
Therefore, from the value of the $ x $ coordinates of the extremum points, we find their $ y $ coordinates.
Therefore, the extremum points are $ x=\dfrac{2\pm \sqrt{37}}{3} $ .
Note: We need to remember that the curve changes its direction on the extremum points only. Other that that the function $ f\left( x \right)=\left( x-4 \right)\left( x-1 \right)\left( x+3 \right) $ is an increasing function in the range of $ x\in \left[ 4,\infty \right) $ and decreasing function in the range of $ x\in \left( -\infty ,-3 \right] $ .
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

