Answer
Verified
405.3k+ views
Hint: We are given 4 years, we are asked to find numbers of seconds are there in it and we have to do it by dimensional analysis, to do so we will learn what does a dimensional analysis means that we will learn how are 4 year and the seconds can be related, we will use that 1 year is same as 365 days then we use 1 day is same as 24 hours then we use that 1 hour is same as 60 minutes and lastly we use that 1 minute is same as 60 seconds so we will combine all these dimension to find the number of seconds in 4 years.
Complete step by step answer:
We are given 4 years; we have to change it into the number of seconds.
Before this we will learn what dimensional analysis meant,
Now dimensional analysis also known as unit factor method is a problem solving method that uses the fact that any number or expression can be multiplied by one without changing its value. It is a great technique to change the dimension of one quantity, quantity remains the same but just the dimension will get changed.
For example: we know 1 meter has 100 centimeter
So, $1m=1cm$ , the quantity is the same , just the dimension is different.
Now, we are given that we have 4 years, that is we have time in a year, we have to find the equivalent time in the seconds.
To do so we will learn how the different dimensions of the time related things are connected.
1 year = 365 days …………………………………… (1)
In 1 day = 24 hours ………………………………… (2)
1 hour = 60 minutes ………………………………. (3)
1 minute = 60 seconds ………………………….. (4)
We have to start from this year and reach it in seconds.
So, now –
$4\text{years}=4\times 1$
From eq (1) we get –
$1=\dfrac{365\text{days}}{1\text{year}}$
$=4\text{year}\times \dfrac{365\text{days}}{1\text{year}}$
From eq (2), we get –
$1=\dfrac{24\text{hours}}{1\text{day}}$
So, $4\text{year}\times \dfrac{365\text{days}}{1\text{year}}\times \dfrac{24\text{hours}}{1\text{day}}$
Now from eq (3) we get –
$1=\dfrac{60\text{minutes}}{1\text{hour}}$
So,
$=4\text{year}\times \dfrac{365\text{days}}{1\text{year}}\times \dfrac{24\text{hour}}{1\text{day}}\times \dfrac{60\text{minutes}}{1\text{hour}}$
From eq (4), we get –
$1=\dfrac{60\text{seconds}}{1\text{minutes}}$
So,
$=4\text{year}\times \dfrac{365\text{days}}{1\text{year}}\times \dfrac{24\text{hour}}{1\text{day}}\times \dfrac{60\text{minutes}}{1\text{hour}}\times \dfrac{60\text{seconds}}{1\text{minute}}$
Now we cancel like terms, we get –
$=4\times 365\times 24\times 60\times 60\text{seconds}$
By simplifying, we get –
$4\text{year=12614400seconds}$
Note: Remember that we need to be careful while multiplying as when we change a big unit to the small then it will get a little larger to calculate. So error may arise also we cannot skip any in between units, we always need to change the term unit by unit. It is widely used in chemistry to change the number of atoms to mole or change large units into small ones.
Complete step by step answer:
We are given 4 years; we have to change it into the number of seconds.
Before this we will learn what dimensional analysis meant,
Now dimensional analysis also known as unit factor method is a problem solving method that uses the fact that any number or expression can be multiplied by one without changing its value. It is a great technique to change the dimension of one quantity, quantity remains the same but just the dimension will get changed.
For example: we know 1 meter has 100 centimeter
So, $1m=1cm$ , the quantity is the same , just the dimension is different.
Now, we are given that we have 4 years, that is we have time in a year, we have to find the equivalent time in the seconds.
To do so we will learn how the different dimensions of the time related things are connected.
1 year = 365 days …………………………………… (1)
In 1 day = 24 hours ………………………………… (2)
1 hour = 60 minutes ………………………………. (3)
1 minute = 60 seconds ………………………….. (4)
We have to start from this year and reach it in seconds.
So, now –
$4\text{years}=4\times 1$
From eq (1) we get –
$1=\dfrac{365\text{days}}{1\text{year}}$
$=4\text{year}\times \dfrac{365\text{days}}{1\text{year}}$
From eq (2), we get –
$1=\dfrac{24\text{hours}}{1\text{day}}$
So, $4\text{year}\times \dfrac{365\text{days}}{1\text{year}}\times \dfrac{24\text{hours}}{1\text{day}}$
Now from eq (3) we get –
$1=\dfrac{60\text{minutes}}{1\text{hour}}$
So,
$=4\text{year}\times \dfrac{365\text{days}}{1\text{year}}\times \dfrac{24\text{hour}}{1\text{day}}\times \dfrac{60\text{minutes}}{1\text{hour}}$
From eq (4), we get –
$1=\dfrac{60\text{seconds}}{1\text{minutes}}$
So,
$=4\text{year}\times \dfrac{365\text{days}}{1\text{year}}\times \dfrac{24\text{hour}}{1\text{day}}\times \dfrac{60\text{minutes}}{1\text{hour}}\times \dfrac{60\text{seconds}}{1\text{minute}}$
Now we cancel like terms, we get –
$=4\times 365\times 24\times 60\times 60\text{seconds}$
By simplifying, we get –
$4\text{year=12614400seconds}$
Note: Remember that we need to be careful while multiplying as when we change a big unit to the small then it will get a little larger to calculate. So error may arise also we cannot skip any in between units, we always need to change the term unit by unit. It is widely used in chemistry to change the number of atoms to mole or change large units into small ones.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE