
Use De Moivre’s theorem, to find the indicated power of ${\left( { - \sqrt 2 - \sqrt 2 i} \right)^5}$?
Answer
479.1k+ views
Hint: This problem is from complex numbers and we need to know De Moivre’s theorem to solve this question. First we have to consider the given equation and we have to equate it to the general form and then we have to consider the power and by De Moivre’s theorem, we need to solve this problem.
Complete step by step answer:
For any complex number, $\left( {\cos n\theta + i\sin n\theta } \right)$ is the value or one of the values for ${\left( {\cos \theta + i\sin \theta } \right)^n}$. Write the given equation in polar form i.e., as $r\left( {\cos \theta + i\sin \theta } \right)$ and equate the real and imaginary parts. First let’s consider the question without considering the power value which is,
$ \Rightarrow \left( { - \sqrt 2 - \sqrt 2 i} \right) = r\left( {\cos \theta + i\sin \theta } \right)$
$ \Rightarrow \left( { - \sqrt 2 - \sqrt 2 i} \right) = r\cos \theta + ri\sin \theta $
Equating real and imaginary term, we get,
$ \Rightarrow r\cos \theta = - \sqrt 2 .............\left( i \right)$
$ \Rightarrow r\sin \theta = - \sqrt 2 ...............\left( {ii} \right)$
Squaring and adding the $\left( i \right)$ and $\left( {ii} \right)$ equation we get,
$ \Rightarrow {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta = {\left( { - \sqrt 2 } \right)^2} + {\left( { - \sqrt 2 } \right)^2}$
$ \Rightarrow {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta = 2 + 2$
On taking ${r^2}$ as a common term, we get
$ \Rightarrow {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) = 2 + 2$
As we know ${\sin ^2}\theta + {\cos ^2}\theta = 1$, therefore, we get
$ \Rightarrow {r^2} = 4$
$ \Rightarrow r = 2$
Substituting the value of $r$ in equation $\left( i \right)$ and $\left( {ii} \right)$ we get,
From $\left( i \right)$, we have
$ \Rightarrow \cos \theta = \dfrac{{ - \sqrt 2 }}{2}$
$ \Rightarrow \cos \theta = \dfrac{{ - 1}}{{\sqrt 2 }}$
From $\left( {ii} \right)$, we have
$ \Rightarrow \sin \theta = \dfrac{{ - \sqrt 2 }}{2}$
$ \Rightarrow \sin \theta = \dfrac{{ - 1}}{{\sqrt 2 }}$
And the value of $\theta = \dfrac{{5\pi }}{4}$, for both, now let’s substitute the value of $r$ and $\theta $ in the equation
$ \Rightarrow {\left( { - \sqrt 2 - \sqrt 2 i} \right)^5} = {\left( {2\cos \dfrac{{5\pi }}{4} + 2i\sin \dfrac{{5\pi }}{4}} \right)^5}$
On taking ${2^5}$ as a common term, we get
$ \Rightarrow {\left( { - \sqrt 2 - \sqrt 2 i} \right)^5} = {2^5}{\left( {\cos \dfrac{{5\pi }}{4} + i\sin \dfrac{{5\pi }}{4}} \right)^5}$
According to DeMoivre’s theorem, ${\left( {\cos \theta + i\sin \theta } \right)^n} = \cos \left( {n\theta } \right) + i\sin \left( {n\theta } \right)$. Therefore, we get
$ \Rightarrow {\left( { - \sqrt 2 - \sqrt 2 i} \right)^5} = {2^5}\left( {\cos \dfrac{{5 \times 5\pi }}{4} + i\sin \dfrac{{5 \times 5\pi }}{4}} \right)$
$ \Rightarrow {\left( { - \sqrt 2 - \sqrt 2 i} \right)^5} = {2^5}\left( {\cos \dfrac{{25\pi }}{4} + i\sin \dfrac{{25\pi }}{4}} \right)$
This can also be written as,
$ \Rightarrow {\left( { - \sqrt 2 - \sqrt 2 i} \right)^5} = {2^5}\left( {\cos \left( {6\pi + \dfrac{\pi }{4}} \right) + i\sin \left( {6\pi + \dfrac{\pi }{4}} \right)} \right)$
As we know $\cos \left( {2n\pi + \theta } \right) = \cos \theta $ and $\sin \left( {2n\pi + \theta } \right) = \sin \theta $, for all values of $\theta $ and $n \in N$. Therefore, we have
$ \Rightarrow {\left( { - \sqrt 2 - \sqrt 2 i} \right)^5} = 32\left( {\cos \left( {\dfrac{\pi }{4}} \right) + i\sin \left( {\dfrac{\pi }{4}} \right)} \right)$
As we know $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$ and $\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$. Therefore, we get
$ \Rightarrow {\left( { - \sqrt 2 - \sqrt 2 i} \right)^5} = 32\left( {\dfrac{1}{{\sqrt 2 }} + i\dfrac{1}{{\sqrt 2 }}} \right)$
On simplification, we get
$ \therefore {\left( { - \sqrt 2 - \sqrt 2 i} \right)^5} = 16\sqrt 2 + 16\sqrt 2 i$
Therefore, the indicated power of ${\left( { - \sqrt 2 - \sqrt 2 i} \right)^5}$ is $16\sqrt 2 + 16\sqrt 2 i$.
Note: A complex number is a combination of real and the imaginary number where $i$ represents the imaginary. To solve or simplify the complex number De Moivre’s theorem is used. It is stated as for any complex number $\theta $ we have, ${\left( {\cos \theta + i\sin \theta } \right)^n} = \cos \left( {n\theta } \right) + i\sin \left( {n\theta } \right)$ where $n$ is a positive integer and $i$ is the imaginary part, $i = \sqrt { - 1} $ and also ${i^2} = - 1$.Remember that this formula is not valid for non-integer powers $m$. The trigonometry ratios values for the standard angles are used to simplify further.
Complete step by step answer:
For any complex number, $\left( {\cos n\theta + i\sin n\theta } \right)$ is the value or one of the values for ${\left( {\cos \theta + i\sin \theta } \right)^n}$. Write the given equation in polar form i.e., as $r\left( {\cos \theta + i\sin \theta } \right)$ and equate the real and imaginary parts. First let’s consider the question without considering the power value which is,
$ \Rightarrow \left( { - \sqrt 2 - \sqrt 2 i} \right) = r\left( {\cos \theta + i\sin \theta } \right)$
$ \Rightarrow \left( { - \sqrt 2 - \sqrt 2 i} \right) = r\cos \theta + ri\sin \theta $
Equating real and imaginary term, we get,
$ \Rightarrow r\cos \theta = - \sqrt 2 .............\left( i \right)$
$ \Rightarrow r\sin \theta = - \sqrt 2 ...............\left( {ii} \right)$
Squaring and adding the $\left( i \right)$ and $\left( {ii} \right)$ equation we get,
$ \Rightarrow {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta = {\left( { - \sqrt 2 } \right)^2} + {\left( { - \sqrt 2 } \right)^2}$
$ \Rightarrow {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta = 2 + 2$
On taking ${r^2}$ as a common term, we get
$ \Rightarrow {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) = 2 + 2$
As we know ${\sin ^2}\theta + {\cos ^2}\theta = 1$, therefore, we get
$ \Rightarrow {r^2} = 4$
$ \Rightarrow r = 2$
Substituting the value of $r$ in equation $\left( i \right)$ and $\left( {ii} \right)$ we get,
From $\left( i \right)$, we have
$ \Rightarrow \cos \theta = \dfrac{{ - \sqrt 2 }}{2}$
$ \Rightarrow \cos \theta = \dfrac{{ - 1}}{{\sqrt 2 }}$
From $\left( {ii} \right)$, we have
$ \Rightarrow \sin \theta = \dfrac{{ - \sqrt 2 }}{2}$
$ \Rightarrow \sin \theta = \dfrac{{ - 1}}{{\sqrt 2 }}$
And the value of $\theta = \dfrac{{5\pi }}{4}$, for both, now let’s substitute the value of $r$ and $\theta $ in the equation
$ \Rightarrow {\left( { - \sqrt 2 - \sqrt 2 i} \right)^5} = {\left( {2\cos \dfrac{{5\pi }}{4} + 2i\sin \dfrac{{5\pi }}{4}} \right)^5}$
On taking ${2^5}$ as a common term, we get
$ \Rightarrow {\left( { - \sqrt 2 - \sqrt 2 i} \right)^5} = {2^5}{\left( {\cos \dfrac{{5\pi }}{4} + i\sin \dfrac{{5\pi }}{4}} \right)^5}$
According to DeMoivre’s theorem, ${\left( {\cos \theta + i\sin \theta } \right)^n} = \cos \left( {n\theta } \right) + i\sin \left( {n\theta } \right)$. Therefore, we get
$ \Rightarrow {\left( { - \sqrt 2 - \sqrt 2 i} \right)^5} = {2^5}\left( {\cos \dfrac{{5 \times 5\pi }}{4} + i\sin \dfrac{{5 \times 5\pi }}{4}} \right)$
$ \Rightarrow {\left( { - \sqrt 2 - \sqrt 2 i} \right)^5} = {2^5}\left( {\cos \dfrac{{25\pi }}{4} + i\sin \dfrac{{25\pi }}{4}} \right)$
This can also be written as,
$ \Rightarrow {\left( { - \sqrt 2 - \sqrt 2 i} \right)^5} = {2^5}\left( {\cos \left( {6\pi + \dfrac{\pi }{4}} \right) + i\sin \left( {6\pi + \dfrac{\pi }{4}} \right)} \right)$
As we know $\cos \left( {2n\pi + \theta } \right) = \cos \theta $ and $\sin \left( {2n\pi + \theta } \right) = \sin \theta $, for all values of $\theta $ and $n \in N$. Therefore, we have
$ \Rightarrow {\left( { - \sqrt 2 - \sqrt 2 i} \right)^5} = 32\left( {\cos \left( {\dfrac{\pi }{4}} \right) + i\sin \left( {\dfrac{\pi }{4}} \right)} \right)$
As we know $\cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$ and $\sin \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}$. Therefore, we get
$ \Rightarrow {\left( { - \sqrt 2 - \sqrt 2 i} \right)^5} = 32\left( {\dfrac{1}{{\sqrt 2 }} + i\dfrac{1}{{\sqrt 2 }}} \right)$
On simplification, we get
$ \therefore {\left( { - \sqrt 2 - \sqrt 2 i} \right)^5} = 16\sqrt 2 + 16\sqrt 2 i$
Therefore, the indicated power of ${\left( { - \sqrt 2 - \sqrt 2 i} \right)^5}$ is $16\sqrt 2 + 16\sqrt 2 i$.
Note: A complex number is a combination of real and the imaginary number where $i$ represents the imaginary. To solve or simplify the complex number De Moivre’s theorem is used. It is stated as for any complex number $\theta $ we have, ${\left( {\cos \theta + i\sin \theta } \right)^n} = \cos \left( {n\theta } \right) + i\sin \left( {n\theta } \right)$ where $n$ is a positive integer and $i$ is the imaginary part, $i = \sqrt { - 1} $ and also ${i^2} = - 1$.Remember that this formula is not valid for non-integer powers $m$. The trigonometry ratios values for the standard angles are used to simplify further.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

