
Use binomial series to expand $f\left( x \right) = \sqrt {1 + {x^2}} $?
Answer
547.2k+ views
Hint: In this question we have to expand the given expression by using binomial formula, as the given power has a fractional exponent we will use the binomial series for fractions which is given by,
${\left( {1 + x} \right)^n} = 1 + \dfrac{{nx}}{{1!}} + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + ....$ , Now substituting the values from the given expression in the question and we will get the required result.
Complete step by step answer:
Binomial expansion for the fractional exponent is given by the formula, ${\left( {1 + x} \right)^n} = 1 + \dfrac{{nx}}{{1!}} + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + ....$,
So, now given expression is$f\left( x \right) = \sqrt {1 + {x^2}} $,
Rewriting the given expression we get,
$ \Rightarrow f\left( x \right) = {\left( {1 + {x^2}} \right)^{\dfrac{1}{2}}}$,
Now substituting the values in the expansion, here $1 = 1$, $x = {x^2}$and $n = \dfrac{1}{2}$, then we get,
$ \Rightarrow {\left( {1 + {x^2}} \right)^{\dfrac{1}{2}}} = 1 + \dfrac{{\left( {\dfrac{1}{2}} \right){x^2}}}{{1!}} + \dfrac{{\dfrac{1}{2}\left( {\dfrac{1}{2} - 1} \right){{\left( {{x^2}} \right)}^2}}}{{2!}} + \dfrac{{\dfrac{1}{2}\left( {\dfrac{1}{2} - 1} \right)\left( {\dfrac{1}{2} - 2} \right){{\left( {{x^2}} \right)}^3}}}{{3!}} + .....$,
Now applying factorial formula i.e.,$n! = n \times (n - 1) \times \left( {n - 2} \right) \times ........ \times 3 \times 2 \times 1$,we get,
$ \Rightarrow {\left( {1 + {x^2}} \right)^{\dfrac{1}{2}}} = 1 + \dfrac{{\left( {\dfrac{1}{2}} \right){x^2}}}{1} + \dfrac{{\dfrac{1}{2}\left( { - \dfrac{1}{2}} \right){x^4}}}{{1 \times 2}} + \dfrac{{\dfrac{1}{2}\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right){x^6}}}{{1 \times 2 \times 3}} + .....$
Now simplifying the expansion by multiplying the fractions in the numerator, we get,
$ \Rightarrow {\left( {1 + {x^2}} \right)^{\dfrac{1}{2}}} = 1 + \dfrac{1}{2}{x^2} + \dfrac{{ - \dfrac{1}{4}{x^4}}}{{1 \times 2}} + \dfrac{{\dfrac{1}{2}\left( {\dfrac{3}{4}} \right){x^6}}}{{1 \times 2 \times 3}}.....$
Now simplifying by multiplying and dividing we get,
$ \Rightarrow {\left( {1 + {x^2}} \right)^{\dfrac{1}{2}}} = 1 + \dfrac{1}{2}{x^2} - \dfrac{{1{x^4}}}{{1 \times 2 \times 4}} + \dfrac{{1{x^6}}}{{1 \times 2 \times 2 \times 4}}.....$
Now final simplification we get,
$ \Rightarrow {\left( {1 + {x^2}} \right)^{\dfrac{1}{2}}} = 1 + \dfrac{1}{2}{x^2} - \dfrac{{{x^4}}}{8} + \dfrac{{{x^6}}}{{16}}.....$.
So, the expansion of the given expression will be $1 + \dfrac{1}{2}{x^2} - \dfrac{{{x^4}}}{8} + \dfrac{{{x^6}}}{{16}}.....$.
$\therefore $ The expansion form of the given expression $f\left( x \right) = \sqrt {1 + {x^2}} $ using binomial series will be equal to$1 + \dfrac{1}{2}{x^2} - \dfrac{{{x^4}}}{8} + \dfrac{{{x^6}}}{{16}}.....$
Note: We use the binomial theorem to help us expand binomials to any given power without direct multiplication. As we have seen, multiplication can be time-consuming or even not possible in some cases.
The binomial theorem is an algebraic method of expanding a binomial expression. Essentially, it demonstrates what happens when you multiply a binomial by itself. For example, consider the expression ${\left( {2x + 5} \right)^9}$. It would take quite a long time to multiply the binomial $2x + 5$ out nine times. The binomial theorem provides a short cut, or a formula that yields the expanded form of this expression.
${\left( {1 + x} \right)^n} = 1 + \dfrac{{nx}}{{1!}} + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + ....$ , Now substituting the values from the given expression in the question and we will get the required result.
Complete step by step answer:
Binomial expansion for the fractional exponent is given by the formula, ${\left( {1 + x} \right)^n} = 1 + \dfrac{{nx}}{{1!}} + \dfrac{{n\left( {n - 1} \right){x^2}}}{{2!}} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right){x^3}}}{{3!}} + ....$,
So, now given expression is$f\left( x \right) = \sqrt {1 + {x^2}} $,
Rewriting the given expression we get,
$ \Rightarrow f\left( x \right) = {\left( {1 + {x^2}} \right)^{\dfrac{1}{2}}}$,
Now substituting the values in the expansion, here $1 = 1$, $x = {x^2}$and $n = \dfrac{1}{2}$, then we get,
$ \Rightarrow {\left( {1 + {x^2}} \right)^{\dfrac{1}{2}}} = 1 + \dfrac{{\left( {\dfrac{1}{2}} \right){x^2}}}{{1!}} + \dfrac{{\dfrac{1}{2}\left( {\dfrac{1}{2} - 1} \right){{\left( {{x^2}} \right)}^2}}}{{2!}} + \dfrac{{\dfrac{1}{2}\left( {\dfrac{1}{2} - 1} \right)\left( {\dfrac{1}{2} - 2} \right){{\left( {{x^2}} \right)}^3}}}{{3!}} + .....$,
Now applying factorial formula i.e.,$n! = n \times (n - 1) \times \left( {n - 2} \right) \times ........ \times 3 \times 2 \times 1$,we get,
$ \Rightarrow {\left( {1 + {x^2}} \right)^{\dfrac{1}{2}}} = 1 + \dfrac{{\left( {\dfrac{1}{2}} \right){x^2}}}{1} + \dfrac{{\dfrac{1}{2}\left( { - \dfrac{1}{2}} \right){x^4}}}{{1 \times 2}} + \dfrac{{\dfrac{1}{2}\left( { - \dfrac{1}{2}} \right)\left( { - \dfrac{3}{2}} \right){x^6}}}{{1 \times 2 \times 3}} + .....$
Now simplifying the expansion by multiplying the fractions in the numerator, we get,
$ \Rightarrow {\left( {1 + {x^2}} \right)^{\dfrac{1}{2}}} = 1 + \dfrac{1}{2}{x^2} + \dfrac{{ - \dfrac{1}{4}{x^4}}}{{1 \times 2}} + \dfrac{{\dfrac{1}{2}\left( {\dfrac{3}{4}} \right){x^6}}}{{1 \times 2 \times 3}}.....$
Now simplifying by multiplying and dividing we get,
$ \Rightarrow {\left( {1 + {x^2}} \right)^{\dfrac{1}{2}}} = 1 + \dfrac{1}{2}{x^2} - \dfrac{{1{x^4}}}{{1 \times 2 \times 4}} + \dfrac{{1{x^6}}}{{1 \times 2 \times 2 \times 4}}.....$
Now final simplification we get,
$ \Rightarrow {\left( {1 + {x^2}} \right)^{\dfrac{1}{2}}} = 1 + \dfrac{1}{2}{x^2} - \dfrac{{{x^4}}}{8} + \dfrac{{{x^6}}}{{16}}.....$.
So, the expansion of the given expression will be $1 + \dfrac{1}{2}{x^2} - \dfrac{{{x^4}}}{8} + \dfrac{{{x^6}}}{{16}}.....$.
$\therefore $ The expansion form of the given expression $f\left( x \right) = \sqrt {1 + {x^2}} $ using binomial series will be equal to$1 + \dfrac{1}{2}{x^2} - \dfrac{{{x^4}}}{8} + \dfrac{{{x^6}}}{{16}}.....$
Note: We use the binomial theorem to help us expand binomials to any given power without direct multiplication. As we have seen, multiplication can be time-consuming or even not possible in some cases.
The binomial theorem is an algebraic method of expanding a binomial expression. Essentially, it demonstrates what happens when you multiply a binomial by itself. For example, consider the expression ${\left( {2x + 5} \right)^9}$. It would take quite a long time to multiply the binomial $2x + 5$ out nine times. The binomial theorem provides a short cut, or a formula that yields the expanded form of this expression.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

